6.8. The primary
decomposition theorem

Decompose into elementary parts
using the minimal polynomials.



Theorem 12. Tin L(V,V). Vf.d.v.s.overF.p

minimal polynomial. P=p,-'....p,/X.r.> 0. Let

W= null p,(T)"-.

— Then

-iHV=W>... bW,

— (ii) Each W, is T-invariant.

— (iii) Let T=T|W;W->W.. Then minpolyT =
pi(T)-
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* Proof: idea is to get E,,..,E,.

_ Let fi= p/pir_i =p1r_1 o pi_1r_i-1 pi+1r_i+1 o pkr_k.
- f,,...,f, are relatively prime since there are no
common factors.

— That is, <f,,....f,.>=F[x].

— There exists g4,...,g, in F[X] s.t.
g,f+....+g,f = 1.

— p divides ff; for i=] since ff; contains all factors.

— Let E; = h(T)=(T)g(T), hi=tig;.



—Since h+...+h =1, E,+...+E =I|.

— E;E=0 for i=).

— E, =E(E, +...+E,)=E? Projections.
—LetimE =W, ThenV=W.®... W,
— (i) is proved.

—TE=ET. Thus Im E, = W.is T-invariant.
— (i) is proved.

— We show that Im E; = null p,(T)™-.

. (_%) pi(T)-' Eja = py(T)-f(T)gi(T)a = p(T) gi(T)a



* (O)ainnull p(T)-".

* If j=i, then f(T)g;(T)a =0 since p/-' divides f;and
hence fg;.

* E;a=0 for j=I. Since a=E,a+...+E,a, it follows
that a=E.a. Hence ain Im E,.

— (1),(i1) is completely proved.

— (i) T,= TIW:W->W.,,

— P,(T,)- =0 since Wi, is the null space of
P(TY-".

— minpolyT, divides P~ .

— Suppose g is s.t. g(T, )=0.



— g(M)H(T)=0:

° fi= p1r_1 o pi_1r_i-1 pi+1r_i+1 o pkr_k.
* Im E=null p//-.

* Thus Im f(T) is in Im E; since V is a direct sum
of Im Es.

— p divides df:.

— p= p,-'f. by definition.

— Thus p~' divides g.

— Thus, minpoly T=p"- .



» Corollary: E,,...,E, projections ass. with
the primary decomposition of T. Then
each E; is a polynomial in T. If a linear
operator U commutes with T, then U
commutes with each of E; and W, is
invariant under U.

* Proof: E=f(T)g,(T). Polynomials in T. Hence
commutes with U.

— W=Im E. UW,)= Im U E= Im EU in Im E=W.,.



Suppose that minpoly(T) is a product of
linear polynomials. p=(x-c,)-'...(x-c, ).
(For example F=C).
— Let D=c,E,+...+c E,. Diagonalizable one.
—T=TE,+...+TE,
— N:=T-D=(T-c,)E1+...+(T-c,1)E,
— N2 = (T-c,l) 2E1+...+(T-c.l) 2E,

N2 E(T c,NE(T~-c DE, E(T ¢.NE(T-c)E,

E(T ¢.)(T-cDEE, = E(T ¢.)’E,

— Nr = (T-c1l) [E1+...+(T-c ) 'E,



— If r=r, for each |, (T-cil)" =0 on Im E,.
— Therefore, N' = 0. N=T-D is nilpotent.

* Definition. N in L(V,V). N is nilpotent if there is
some integerrs.t. N"= 0.

« Theorem 13. T in L(V,V). Minpoly T= prod.of
1st order polynomials. Then there exists a
diagonalizable D and a nilpotent operator N
s.t.

— (i) T=D+N.

— (i) DN=ND.

— D, N are uniquely determined by (i)(ii) and are
polynomials of T.



* Proof: T=D+N. E=h,(T)=f.(T)g:(T).
— D=c,E,+...+c.E, is a polynomial in T.
— N=T-D a polynomial in T.
— Hence, D,N commute.
« (Uniquenss) Suppose T=D’ +N’, D' N’
commutes, D’ diagonalizable, N nilpotent.

— D’ commutes T=D" +N’. D’ commutes with any
polynomials of T.

— D’ commutes with D and N.
— D’ +N’ =D+N.
— D-D’ =N’ -N. They commutes with each other.

— Since D and D’ commutes, they are
simultaneously diagonalizable. (Section. 6.5
Theorem 8.)



— N’ -N is nilpotent:

(N'-NY = E(;)(N‘)r‘j(—N)j

* ris suff. large. (larger 2max of the degrees of
N,N") ->r-jorjis suff large.

* Thus the above is zero.

— D-D’ =N’-N is a nilpotent operator which
has a diagonal matrix. Thus, D-D’" =0 and
N’ -N=0.

— D’ =D and N’" =N.



Application to differential equations.

Primary decompostion theorem holds when V
Is infinite dimensional and when p is only that
p(T)=0. Then (i),(ii) hold.

This follows since the same argument will
work.

A positive integer n.

V = {f| n times continuously differentiable
complex valued functions which satisfy ODE

d"f d”‘lf df
——+a, ,——+..+a—+a,f =0,a,,....a_ ER
} dnl_ n-1 dn_lt 1 dt Of 0 1

Cn={n times continuously differentiable
complex valued functions}



Let p=x"+a _,x"1+...+a,x + a,.

Let D differential operator,

Then V is a subspace of C"where p(D)f=0.
V=null p(D).

Factor p=(x-c,)-'...(x-c,)-X. c,,..,C, in the
complex number field C.

Define W; := null(D-c;l)-.

Then Theorem 12 says that

V=W@®... W,

In other words, if f satisfies the given

differential operator, then f is expressed as
f=f+...+f, fin W.



What are W.:s? Solve (D-cl)" f=0.

Fact: (D-cl) f=eDr(e-tf):

— (D-cl) f=ectD(e-°tf).

— (D-cl)?f= e®D(et e“tD(etf))....

(D-cl) f=0 <-> D"(e-tf)=0:

— Solution: etf is a polynomial of deg <.
— f= el(by+ byt +...+ b, t7).

Here ect tect t2ect,..., t~1etare linearly
iIndependent.

Thus {t"e°Jt| m=0,...,r-1, j=1,... K} form a
basis for V.

Thus V is finite-dimensional and has dim
equal to deg. p.



/.1. Rational forms

Definition: T in L(V,V), a vector a.
T-cyclic subspace generated by a is
Z(a;T)={v=g(T)alg in F[x]}.
Z(a;T)=<a, Ta,T4a,....>

If Z(a:T)=V, then a is said to be a cyclic vector
for T.

Recall T-annihilator of a is the ideal
M(a:T)=<g in F[x]| g(T)a=0>=p_F[X].

p, is the T-annihilator of a.



« Theorem 1. a=0. p, T-annihilator of a.
— (i) deg p, = dim Z(a;T).
— (i) If deg p, =k, a, Ta,...,Tx'a is a basis of
— (i) Let U:=T|Z(a;T):Z(a:T)->Z(a;T).
Minpoly U=p..
* Proof: Letgin F[x]. g=p_q+r. deg(r) <
deg(p,). 9(T)a=r(T)a.
— r(T)a is a linear combination of a, Ta,...,T<a.
— Thus, this k vectors span Z(a;T).

— They are linearly independent. Otherwise, we get
another g of lower than k degree s.t. g(T)a =0.

— (i),(i1) are proved.



— U:=T|Z(a;T):.4L(a:T)->Z(a;T).

— g In F[x].

— pa(U)g(T)a= pa(T)g(T)a (since g(T) aisin Z(a;T).)
= g(T)p,(T)a = g(T)0=0.

—p,(U)=0 on Z(a;T) and p, is monic.

— If h is a polynomial of lower-degree than p._,
then h(U)=0. (since h(U)a=h(T)a=0).

— Thus, p, is the minimal polynomial of U.



« Suppose T:V->V has a cyclic vector a.
» deg minpolyU=dimZ(a; T)=dim V=n.

* minpoly U=minpoly T.

* Thus, minpoly T = char.poly T.

* \We obtain:

T has a cyclic vector <-> minpoly T=char.polyT.

* Proof: (->) done above.

e (<-) Later, we show for any T, there is a vector v
s.t. minpolyT=annihilator v. (p.237. Corollary).

e So if minpolyT=charpolyT. Then dimZ(v;T)=n and
v is a cyclic vector.



Study T by cyclic vector.

U on W with a cyclic vector v. (W=Z(v:T) for
example and U the restriction of T.)

v, Uv, U%v,...,U*v is a basis of W.
U-annihiltor of v = minpoly U by Theorem 1.
Let vi=U"1v. i=1,... k.

Let B={v,,...,V,}.

Uv=v,,. 1=1,... k-1.

Uv,=-c,v,-C,V,-...-C, 4V, Where
minpolyU=c,+c,x+...+c,_xK1+xk,

o (covtc,Uv+...+c, UKTv+Ukv=0.)



0 00 0 .. .. 0 —c,
1000 .. .. 0 -c
0100 .. .. 0 -c,
oo 10 .. . 0 -c,
[U=l0 0 0 1 0 -c,
0000 .. .. 1 -]

* This is called the companion matrix of pa.
(defined for any monic polynomial.)



 Theorem 2. If U is a linear operator on a
f.d.v.s.W, then U has a cyclic vector iff
there is some ordered basis where U is
represented by a companion matrix.

* Proof: (->) Done above.

* (<-) If we have a basis {v,,...,v,},
—then v, is the cyclic vector.



» Corollary. If A is the companion matrix
of a monic polynomial p, then p is both
the minimal and the characteristic
polynomial of A.

* Proof: Let a=(1,0,...0). Thenais a
cyclic vector and Z(a;A)=V.
— The annihilator of a is p. deg p=n also.
— By Theorem 1(iii), the minimal poly for T is
P

— Since p divides char.polyA. And p has
degree n. p=char.polyA.



