6.8. The primary decomposition theorem

Decompose into elementary parts using the minimal polynomials.

- Theorem 12. T in L(V,V). V f.d.v.s. over F. p minimal polynomial. P=p₁^{r_1}....p_k^{r_k}.r_i > 0. Let W_i= null p_i(T)^{r_i}.
 - Then
 - (i) $V = W_1 \oplus ... \oplus W_k$
 - (ii) Each W_i is T-invariant.
 - (iii) Let $T_i = T|W_i:W_i -> W_i$. Then minpoly $T_i = p_i(T)^{r_i}$

Example:
$$T = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

- Char.polyT= $(x-1)^2(x-2)^2$ =min.polyT:
 - Check this by any lower degree does not kill T by computations.

- Similarly $null(T-2I)^2 =$

$$\left\{ \begin{bmatrix} 0 \\ 0 \\ x \end{bmatrix} \middle| x, y \in R \right\}$$

$$T_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad T_2 = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

- Proof: idea is to get E₁,...,E_k.
 - Let $f_i = p/p_i^{r_i} = p_1^{r_i} \dots p_{i-1}^{r_i-1} \dots p_{i-1}^{r_i-1} p_{i+1}^{r_i-1} \dots p_k^{r_i-k}$.
 - f₁,...,f_k are relatively prime since there are no common factors.
 - That is, $\{f_1, ..., f_k\} = F[x]$.
 - There exists $g_1,...,g_k$ in F[x] s.t. $g_1f_1+....+g_kf_k = 1$.
 - p divides f_if_i for i≠j since f_if_i contains all factors.
 - Let $E_i = h_i(T) = f_i(T)g_i(T)$, $h_i = f_ig_i$.

- Since $h_1 + ... + h_k = 1$, $E_1 + ... + E_k = I$.
- $-E_iE_i=0$ for i≠j.
- $-E_i = E_i(E_1 + ... + E_k) = E_i^2$. Projections.
- Let Im $E_i = W_i$. Then $V = W_1 \oplus ... \oplus W_k$.
- (i) is proved.
- $-TE_i = E_iT$. Thus Im $E_i = W_i$ is T-invariant.
- (ii) is proved.
- We show that Im $E_i = \text{null } p_i(T)^{r_i}$.
 - (\subset) $p_i(T)^{r_i} E_i a = p_i(T)^{r_i} f_i(T) g_i(T) a = p(T) g_i(T) a = 0.$

- (\supset) a in null $p_i(T)^{r_i}$.
- If j≠i, then f_j(T)g_j(T)a =0 since p_i^{r_i} divides f_j and hence f_ig_i.
- E_ja=0 for j≠I. Since a=E₁a+...+E_ka, it follows that a=E_ia. Hence a in Im E_i.
- (i),(ii) is completely proved.
- $-(iii) T_i = T|W_i:W_i->W_i.$
- $-P_i(T_i)^{r_i} = 0$ since W_i is the null space of $P_i(T)^{r_i}$.
- minpolyT_i divides P_i^{r_i}.
- Suppose g is s.t. $g(T_i)=0$.

- $-g(T)f_{i}(T)=0$:
 - $f_i = p_1^{r-1} ... p_{i-1}^{r-i-1} p_{i+1}^{r-i+1} ... p_k^{r-k}$.
 - Im E_i=null p_i^{r_i}.
 - Thus Im f_i(T) is in Im E_i since V is a direct sum of Im E_is.
- p divides gf_i.
- $-p=p_i^{r_i}f_i$ by definition.
- Thus p_i^{r_i} divides g.
- Thus, minpoly $T_i = p_i^{r_i}$.

- Corollary: E₁,...,E_k projections ass. with the primary decomposition of T. Then each E_i is a polynomial in T. If a linear operator U commutes with T, then U commutes with each of E_i and W_i is invariant under U.
- Proof: E_i= f_i(T)g_i(T). Polynomials in T. Hence commutes with U.
 - $-W_i=Im E_i$. $U(W_i)=Im U E_i=Im E_iU in Im E_i=W_i$.

- Suppose that minpoly(T) is a product of linear polynomials. p=(x-c₁)^r-¹...(x-c_k)^r-^k. (For example F=C).
 - Let $D=c_1E_1+...+c_kE_k$. Diagonalizable one.

$$-T=TE_1+...+TE_k$$

$$- N:=T-D=(T-c_1I)E1+...+(T-c_kI)E_k$$

$$-N^2 = (T-c_1I)^2E1+...+(T-c_kI)^2E_k$$

$$N^{2} = \sum_{i,j} (T - c_{i}I)E_{i}(T - c_{j}I)E_{j} = \sum_{i} (T - c_{i}I)E_{i}(T - c_{i}I)E_{i}$$

$$= \sum_{i} (T - c_{i}I)(T - c_{i}I)E_{i}E_{i} = \sum_{i} (T - c_{i}I)^{2}E_{i}$$

$$-N^{r} = (T-c1I)^{r}E1+...+(T-c_{k}I)^{r}E_{k}$$

- If r≥r_i for each I, (T-ciI)^r =0 on Im E_i.
- Therefore, $N^r = 0$. N=T-D is nilpotent.
- Definition. N in L(V,V). N is nilpotent if there is some integer r s.t. N^r = 0.
- Theorem 13. T in L(V,V). Minpoly T= prod.of 1st order polynomials. Then there exists a diagonalizable D and a nilpotent operator N s.t.
 - (i) T=D+N.
 - (ii) DN=ND.
 - D, N are uniquely determined by (i)(ii) and are polynomials of T.

- Proof: T=D+N. $E_i=h_i(T)=f_i(T)g_i(T)$.
 - $-D=c_1E_1+...+c_kE_k$ is a polynomial in T.
 - N=T-D a polynomial in T.
 - Hence, D,N commute.
- (Uniquenss) Suppose T=D'+N', D'N' commutes, D' diagonalizable, N nilpotent.
 - D' commutes T=D'+N'. D' commutes with any polynomials of T.
 - D' commutes with D and N.
 - D' + N' = D + N.
 - D-D'=N'-N. They commutes with each other.
 - Since D and D' commutes, they are simultaneously diagonalizable. (Section. 6.5 Theorem 8.)

– N' -N is nilpotent:

$$(N'-N)^{r} = \sum_{j=0}^{r} {r \choose j} (N')^{r-j} (-N)^{j}$$

- r is suff. large. (larger 2max of the degrees of N,N') -> r-j or j is suff large.
- Thus the above is zero.
- D-D'=N'-N is a nilpotent operator which has a diagonal matrix. Thus, D-D'=0 and N'-N=0.
- -D'=D and N'=N.

- Application to differential equations.
- Primary decompostion theorem holds when V is infinite dimensional and when p is only that p(T)=0. Then (i),(ii) hold.
- This follows since the same argument will work.
- A positive integer n.
- V = {f| n times continuously differentiable complex valued functions which satisfy ODE

$$\frac{d^n f}{d^n t} + a_{n-1} \frac{d^{n-1} f}{d^{n-1} t} + \dots + a_1 \frac{df}{dt} + a_o f = 0, a_0, \dots, a_{n-1} \in \mathbb{R}$$

 Cⁿ={n times continuously differentiable complex valued functions}

- Let $p=x^n+a_{n-1}x^{n-1}+...+a_1x+a_0$.
- Let D differential operator,
- Then V is a subspace of Cⁿ where p(D)f=0.
- V=null p(D).
- Factor $p=(x-c_1)^{r-1}...(x-c_k)^{r-k}. c_1,...,c_k$ in the complex number field C.
- Define $W_j := null(D-c_j I)^{r_j}$.
- Then Theorem 12 says that
 V = W₁⊕... ⊕W_k
- In other words, if f satisfies the given differential operator, then f is expressed as f = f₁+...+f_k, f_i in W_i.

- What are W_is? Solve (D-cl)^r f=0.
- Fact: (D-cI)^r f=e^{ct}D^r(e^{-ct} f):
 - (D-cI) $f=e^{ct}D(e^{-ct}f)$.
 - $(D-cI)^2f = e^{ct}D(e^{-ct}e^{ct}D(e^{-ct}f))....$
- $(D-cI)^r f=0 <-> D^r (e^{-ct} f)=0$:
 - Solution: e^{-ct} f is a polynomial of deg < r.
 - $f = e^{ct}(b_0 + b_1t + ... + b_{r-1}t^{r-1}).$
- Here e^{ct}, te^{ct}, t²e^{ct},..., t^{r-1}e^{ct} are linearly independent.
- Thus {t^me^c_it| m=0,...,r_j-1, j=1,...,k} form a basis for V.
- Thus V is finite-dimensional and has dim equal to deg. p.

7.1. Rational forms

- Definition: T in L(V,V), a vector a.
 T-cyclic subspace generated by a is Z(a;T)={v=g(T)a|g in F[x]}.
- $Z(a;T)=\langle a, Ta, T^2a,.... \rangle$
- If Z(a:T)=V, then a is said to be a cyclic vector for T.
- Recall T-annihilator of a is the ideal M(a:T)=<g in F[x]| g(T)a=0>=p_aF[x].
- p_a is the T-annihilator of a.

- Theorem 1. a≠0. p_a T-annihilator of a.
 - (i) deg $p_a = \dim Z(a;T)$.
 - (ii) If deg $p_a = k$, a, Ta,..., $T^{k-1}a$ is a basis of
 - (iii) Let U:=T|Z(a;T):Z(a;T)->Z(a;T). Minpoly U= p_a .
- Proof: Let g in F[x]. g=p_aq+r. deg(r) < deg(p_a). g(T)a=r(T)a.
 - r(T)a is a linear combination of a, Ta,...,T^{k-1}a.
 - Thus, this k vectors span Z(a;T).
 - They are linearly independent. Otherwise, we get another g of lower than k degree s.t. g(T)a = 0.
 - (i),(ii) are proved.

- -U:=T|Z(a;T):Z(a:T)->Z(a;T).
- -g in F[x].
- $-p_a(U)g(T)a = p_a(T)g(T)a \text{ (since g(T) } a \text{ is in } Z(a;T).)$ $= g(T)p_a(T)a = g(T)0=0.$
- $-p_a(U)=0$ on Z(a;T) and p_a is monic.
- If h is a polynomial of lower-degree than p_a,
 then h(U)≠0. (since h(U)a=h(T)a≠0).
- Thus, p_a is the minimal polynomial of U.

- Suppose T:V->V has a cyclic vector a.
- deg minpolyU=dimZ(a;T)=dim V=n.
- minpoly U=minpoly T.
- Thus, minpoly T = char.poly T.
- We obtain:

T has a cyclic vector <-> minpoly T=char.polyT.

- Proof: (->) done above.
 - (<-) Later, we show for any T, there is a vector v s.t. minpolyT=annihilator v. (p.237. Corollary).
 - So if minpolyT=charpolyT. Then dimZ(v;T)=n and v is a cyclic vector.

- Study T by cyclic vector.
- U on W with a cyclic vector v. (W=Z(v:T) for example and U the restriction of T.)
- v, Uv, $U^2v,...,U^{k-1}v$ is a basis of W.
- U-annihiltor of v = minpoly U by Theorem 1.
- Let $v_i = U^{i-1}v$. i = 1, ..., k.
- Let $B = \{v_1, ..., v_k\}$.
- $Uv_i=v_{i+1}$. i=1,...,k-1.
- $Uv_k = -c_0v_1 c_1v_2 ... c_{k-1}v_k$ where minpoly $U = c_0 + c_1x + ... + c_{k-1}x^{k-1} + x^k$.
 - $(c_0v+c_1Uv+...+c_{k-1}U^{k-1}v+U^kv=0.)$

$$[U]_{B} = \begin{bmatrix} 0 & 0 & 0 & 0 & \dots & \dots & 0 & -c_{0} \\ 1 & 0 & 0 & 0 & \dots & \dots & 0 & -c_{1} \\ 0 & 1 & 0 & 0 & \dots & \dots & 0 & -c_{2} \\ 0 & 0 & 1 & 0 & \dots & \dots & 0 & -c_{3} \\ 0 & 0 & 0 & 1 & \dots & \dots & 0 & -c_{4} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \dots & 1 & -c_{k-1} \end{bmatrix}$$

 This is called the companion matrix of pa. (defined for any monic polynomial.)

- Theorem 2. If U is a linear operator on a f.d.v.s.W, then U has a cyclic vector iff there is some ordered basis where U is represented by a companion matrix.
- Proof: (->) Done above.
- (<-) If we have a basis $\{v_1, \dots, v_k\}$,
 - then v_1 is the cyclic vector.

- Corollary. If A is the companion matrix of a monic polynomial p, then p is both the minimal and the characteristic polynomial of A.
- Proof: Let a=(1,0,...0). Then a is a cyclic vector and Z(a;A)=V.
 - The annihilator of a is p. deg p=n also.
 - By Theorem 1(iii), the minimal poly for T is p.
 - Since p divides char.polyA. And p has degree n. p=char.polyA.