7.1. Dimension and
structure

We will study subspaces through bases. Although there are many, they can be used to

make a subspace like the Euclidean space.
This enables us to study abstract vector spaces later.




Bases for subspaces

Consider V=Span{v_1,v_2,...,v_I}.

If v_iis a linear combination of other vectors, we can drop
v_i. V=Span{v_a,v_2,..,v_i-1,v_i+1,..,v_I}.

To obtain a minimal set for a given V, we need to get
V=Span{v_1,...,v_s}so thatv_z,..,v_s are linearly
independent.

Definition 7.1.1 A set of vectors in a subspace V of R” is said to be a basis for V if it is
linearly independent and spans V.




® Example: {O} no basis.

® R"itself is a subspace and has a standard basis.
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vector. (One can choose any such.)

A plane through O has a basis consisting of two nonzero
vectors tangent to the plane. Any two nonparallel and
nonzero will form a basis.

To make the independence test easier, we use the following.

That is we will only need to consider firsti ones to
understand independence.

Theorem 7.1.2 If S = {vy, vy, ..., Vi} is a set of two or more nonzero vectors in R",

then S is linearly dependent if and only if some vector in S is a linear combination of its
predecessors.




® The nonzero row vectors in the ref are linearly
independent.

Proof: Given arow with a leading 1 at jth position, the
linear combinations of the previous rows, will give you a
nonzero entry at entries below the j-th position. By
theorem 7.1.2, we are done.

Given an independent set of vectors §{v_1,v_2,..,v_s},
suppose Vv is a nonzero vector which is not a linear
combinations of the given ones, then one can add v to
the list and the list is still independent. Why?




The existence of basis

Theorem 7.1.3 (Existence of a Basis) If V is a nonzero subspace of R", then there exists a
basis for V that has at most n vectors.

® Proof: Visnot {O}. Letv_1 be a nonzero vector. (It exists.)
If V=Span{v_1}, we are done.

If Vis not Span{v_1}. Choose v_2 not in Span{v_a}. {v_1,v_2} are
independent (why?). If V=Span{v_1,v_2}, then we are done.

Suppose we did this continuously, V has an independent set
S={v_1,v_2,...,v_s}. If V=SpanS, then we are done. Otherwise,
choose v_{s+1} not in the span.

By Theorem 3.4.8, s cannot be greater than n.
Thus we must stop at some s to get V=SpanS and S is independent.

® Basisis not unique for V.




Theorem 7.1.4 All bases for a nonzero subspace of R" have the same number of vectors.

® Proof:{v_1a,...,v_k}, fw_1,...,w_m} bases. Show k=m.
Assume k < m without loss of generality.
We can write w_i as linear combination of v_1,..,v_k.
Let A be kxm matrix doing this.
w_i=2_jA_jiv_j (*)
Then Ax=0 has a nontrivial solution since k < m.
Let (c_1,...,c_m) be the nontrivial solution.
Then c_1a_1+...+c_ma_m=o for a_iith row of A.

Then c_aw_1+...+c_mw_m =0 by computations.

This follows by pluging in (*) to the equation and collecting
over v_is.




Dimension

Definition 7.1.5 If V is a nonzero subspace of R”, then the dimension of V, written
dim(V), is defined to be the number of vectors in a basis for V. In addition, we define the
zero subspace to have dimension O.

Example: R" has dimension n.

Example: Solution space has dimension equal to the number f
of free variables.

Setting i-th free variable 1 and the rest o gives us a column vector
v_i. (canonical solutions)

Then {v_a,v_2,...,v_f} spans the solution space.

fv_a1,v_2,..v_f}islinearly independent since the positions of 1 and o
for free variable positions in v_is are different.

Thus {v_a,v_2,...,v_f}is a basis.

See Example 7.




Dimension of a hyperplane

® 3 1X 1+a 2X 2+...+a_NnX_Nn=0.
® [1,%%* .. *]or[o1,*..,%],..

® |t has n-1 free variables.

Theorem 7.1.6 If a is a nonzero vector in R", then dim(a’) =n — 1.




