7_4 The dimension theorem and its applications Rank+nullity=dimension ## The dimension theorem for matrices - Let A be an mxn matrix. - Ax=o. Let R be the ref of A. - r nonzero rows, n-r free variables. - r is the rank of R and hence that of A. - nullity A = nullity R = n-r - rank A+ nullity A = n=the number of columns **Theorem 7.4.1** (*The Dimension Theorem for Matrices*) If A is an $m \times n$ matrix, then $\operatorname{rank}(A) + \operatorname{nullity}(A) = n \tag{2}$ • Example 1. ### Expanding a linearly independent set to a basis - {v_1,v_2,..,v_k} linearly independent in Rⁿ. - We can expend it to a basis. - First let A be the matrix with rows v_i. - The rank of A = k (Why?) - Solve Ax=0. The nullity A = n-k. - Find the basis of the solution space w_k+1, ..., w_n. - v_is and w_js are orthogonal. - {v_1,...,v_k,w_k+1,..,w_n} are linearly independent and hence is a basis. - Example 2: read yourself. #### Some consequences • This is a useful theorem. (See Example 3,4) **Theorem 7.4.2** If an $m \times n$ matrix A has rank k, then: - (a) A has nullity n k. - (b) Every row echelon form of A has k nonzero rows. - (c) Every row echelon form of A has m k zero rows. - (d) The homogeneous system $A\mathbf{x} = \mathbf{0}$ has k pivot variables (leading variables) and n k free variables. **Theorem 7.4.3** (The Dimension Theorem for Subspaces) If W is a subspace of \mathbb{R}^n , then $$\dim(W) + \dim(W^{\perp}) = n \tag{3}$$ - Proof: If W={O}, trivially true. Suppose that W is not {O}. - Form a matrix A with rows the basis of W. - A is an mxn matrix. n is the dimension of Rⁿ. - The row space of A is W. - The null space of A is W^c. - $\dim(W)+\dim(W^c)=\operatorname{rank} A + \operatorname{nullity} A = n.$ **Theorem 7.4.4** If A is an $n \times n$ matrix, and if T_A is the linear operator on \mathbb{R}^n with standard matrix A, then the following statements are equivalent. - (a) The reduced row echelon form of A is I_n . - (b) A is expressible as a product of elementary matrices. - (c) A is invertible. - (d) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. - (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbb{R}^n . - (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n . - $(g) \det(A) \neq 0.$ - (h) $\lambda = 0$ is not an eigenvalue of A. - (i) T_A is one-to-one. - (j) T_A is onto. - (k) The column vectors of A are linearly independent. - (l) The row vectors of A are linearly independent. - (m) The column vectors of A span \mathbb{R}^n . - (n) The row vectors of A span \mathbb{R}^n . - (o) The column vectors of A form a basis for \mathbb{R}^n . - (p) The row vectors of A form a basis for \mathbb{R}^n . - $(q) \operatorname{rank}(A) = n.$ - (r) nullity(A) = 0. ### Hyperplanes **Theorem 7.4.5** If W is a subspace of R^n with dimension n-1, then there is a nonzero vector \mathbf{a} for which $W = \mathbf{a}^{\perp}$; that is, W is a hyperplane through the origin of R^n . **Theorem 7.4.6** The orthogonal complement of a hyperplane through the origin of R^n is a line through the origin of R^n , and the orthogonal complement of a line through the origin of R^n is a hyperplane through the origin of R^n . Specifically, if \mathbf{a} is a nonzero vector in R^n , then the line $\text{span}\{\mathbf{a}\}$ and the hyperplane \mathbf{a}^{\perp} are orthogonal complements of one another. #### Rank 1 matrices: classification - If A is of rank 1, then nullity A=n-1. - The row space of A is a line through O. - The null space of A is a hyperplane. - The converse also holds. - If rank A =1, then row space of A is spanned by a single vector a. - Each row vector is a scalar multiple of a. - The null space A is a^c. - The converse also holds. - How to obtain a rank 1 matrix. One take a vector v and multiply by scalars u_1, u_2,..,u_m and obtain u_1v, u_2v,..,u_mv. Take A to be the mxn matrix with these rows. - Then $A = uv^T$ for $u = (u_1, u_2, ..., u_m)$. - Conversely, given a rank 1 matrix A, the rows of A are scalar multiple of some vector v. Listing the scalar multiples we form a vector u=(u_1,u_2,...,u_m). - We obtain A= uv^T (See Example 8) **Theorem 7.4.7** If **u** is a nonzero $m \times 1$ matrix and **v** is a nonzero $n \times 1$ matrix, then the outer product $$A = \mathbf{u}\mathbf{v}^T$$ has rank 1. Conversely, if A is an $m \times n$ matrix with rank 1, then A can be factored into a product of the above form. #### Symmetric rank 1 matrices • A=uu^T is symmetric. (A^T=uu^T also.) **Theorem 7.4.8** If **u** is a nonzero $n \times 1$ column vector, then the outer product \mathbf{uu}^T is a symmetric matrix of rank 1. Conversely, if A is a symmetric $n \times n$ matrix of rank 1, then it can be factored as $A = \mathbf{uu}^T$ or else as $A = -\mathbf{uu}^T$ for some nonzero $n \times 1$ column vector **u**.