7_4 The dimension theorem and its applications

Rank+nullity=dimension

The dimension theorem for matrices

- Let A be an mxn matrix.
- Ax=o. Let R be the ref of A.
- r nonzero rows, n-r free variables.
- r is the rank of R and hence that of A.
- nullity A = nullity R = n-r
- rank A+ nullity A = n=the number of columns

Theorem 7.4.1 (*The Dimension Theorem for Matrices*) If A is an $m \times n$ matrix, then $\operatorname{rank}(A) + \operatorname{nullity}(A) = n \tag{2}$

• Example 1.

Expanding a linearly independent set to a basis

- {v_1,v_2,..,v_k} linearly independent in Rⁿ.
- We can expend it to a basis.
 - First let A be the matrix with rows v_i.
 - The rank of A = k (Why?)
 - Solve Ax=0. The nullity A = n-k.
 - Find the basis of the solution space w_k+1, ..., w_n.
 - v_is and w_js are orthogonal.
 - {v_1,...,v_k,w_k+1,..,w_n} are linearly independent and hence is a basis.
 - Example 2: read yourself.

Some consequences

• This is a useful theorem. (See Example 3,4)

Theorem 7.4.2 If an $m \times n$ matrix A has rank k, then:

- (a) A has nullity n k.
- (b) Every row echelon form of A has k nonzero rows.
- (c) Every row echelon form of A has m k zero rows.
- (d) The homogeneous system $A\mathbf{x} = \mathbf{0}$ has k pivot variables (leading variables) and n k free variables.

Theorem 7.4.3 (The Dimension Theorem for Subspaces) If W is a subspace of \mathbb{R}^n , then

$$\dim(W) + \dim(W^{\perp}) = n \tag{3}$$

- Proof: If W={O}, trivially true.
 Suppose that W is not {O}.
 - Form a matrix A with rows the basis of W.
 - A is an mxn matrix. n is the dimension of Rⁿ.
 - The row space of A is W.
 - The null space of A is W^c.
 - $\dim(W)+\dim(W^c)=\operatorname{rank} A + \operatorname{nullity} A = n.$

Theorem 7.4.4 If A is an $n \times n$ matrix, and if T_A is the linear operator on \mathbb{R}^n with standard matrix A, then the following statements are equivalent.

- (a) The reduced row echelon form of A is I_n .
- (b) A is expressible as a product of elementary matrices.
- (c) A is invertible.
- (d) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbb{R}^n .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n .
- $(g) \det(A) \neq 0.$
- (h) $\lambda = 0$ is not an eigenvalue of A.
- (i) T_A is one-to-one.
- (j) T_A is onto.
- (k) The column vectors of A are linearly independent.
- (l) The row vectors of A are linearly independent.
- (m) The column vectors of A span \mathbb{R}^n .
- (n) The row vectors of A span \mathbb{R}^n .
- (o) The column vectors of A form a basis for \mathbb{R}^n .
- (p) The row vectors of A form a basis for \mathbb{R}^n .
- $(q) \operatorname{rank}(A) = n.$
- (r) nullity(A) = 0.

Hyperplanes

Theorem 7.4.5 If W is a subspace of R^n with dimension n-1, then there is a nonzero vector \mathbf{a} for which $W = \mathbf{a}^{\perp}$; that is, W is a hyperplane through the origin of R^n .

Theorem 7.4.6 The orthogonal complement of a hyperplane through the origin of R^n is a line through the origin of R^n , and the orthogonal complement of a line through the origin of R^n is a hyperplane through the origin of R^n . Specifically, if \mathbf{a} is a nonzero vector in R^n , then the line $\text{span}\{\mathbf{a}\}$ and the hyperplane \mathbf{a}^{\perp} are orthogonal complements of one another.

Rank 1 matrices: classification

- If A is of rank 1, then nullity A=n-1.
 - The row space of A is a line through O.
 - The null space of A is a hyperplane.
 - The converse also holds.
- If rank A =1, then row space of A is spanned by a single vector a.
 - Each row vector is a scalar multiple of a.
 - The null space A is a^c.
 - The converse also holds.

- How to obtain a rank 1 matrix. One take a vector v and multiply by scalars u_1, u_2,..,u_m and obtain u_1v, u_2v,..,u_mv. Take A to be the mxn matrix with these rows.
- Then $A = uv^T$ for $u = (u_1, u_2, ..., u_m)$.
- Conversely, given a rank 1 matrix A, the rows of A are scalar multiple of some vector v. Listing the scalar multiples we form a vector u=(u_1,u_2,...,u_m).
- We obtain A= uv^T (See Example 8)

Theorem 7.4.7 If **u** is a nonzero $m \times 1$ matrix and **v** is a nonzero $n \times 1$ matrix, then the outer product

$$A = \mathbf{u}\mathbf{v}^T$$

has rank 1. Conversely, if A is an $m \times n$ matrix with rank 1, then A can be factored into a product of the above form.

Symmetric rank 1 matrices

• A=uu^T is symmetric. (A^T=uu^T also.)

Theorem 7.4.8 If **u** is a nonzero $n \times 1$ column vector, then the outer product \mathbf{uu}^T is a symmetric matrix of rank 1. Conversely, if A is a symmetric $n \times n$ matrix of rank 1, then it can be factored as $A = \mathbf{uu}^T$ or else as $A = -\mathbf{uu}^T$ for some nonzero $n \times 1$ column vector **u**.