7.8 Best approximation and least
squares



Minimum distance problem

The Minimum Distance Problem in R" Given a subspace W and a vector b in R”, find
a vector w in W that is closest to b in the sense that ||b — w|| < ||b — w|| for every vector w
in W that is distinct from w. Such a vector w, if it exists, is called a best approximation to
b from W (Figure 7.8.1).

e Answer:

Theorem 7.8.1 (Best Approximation Theorem) If W is a subspace of R", and b is a point in
R", then there is a unique best approximation to b from W, namely W = proj,b.

* Distance from b to a subspace W.
* d=[|b-proj_W(b)||=]|proj_W<(b)||.



Least square solutions of the linear
system.

* Ax=Db.
* |f this is inconsistent, minimize | |b-Ax||.

Definition 7.8.2 If A is an m x n matrix and b is a vector in R, then a vector X in R" is
called a best approximate solution or a least squares solution of Ax = b if

b — AX|| < [[b — Ax| 5)

for all x in R". The vector b — AX is called the least squares error vector, and the scalar
|Ib — AX|| is called the least squares error.



Finding the least squares solutions of

linear systemes.

Ax=Db.
AXx is in col(A).
| |b-Ax]| | is minimized when Ax=proj_col(A)b.

This is consistent. Every system has the least squares
solution.

b-Ax=b-proj_col(A)b.
AT(b-Ax)=AT(b-proj_col(A)b).
proj_null(AT)b=b-proj_col(A)b.
Thus, AT(b-Ax)=0 or ATAx=A'b.

This is called the normal equation associated with
Ax=Db.



Theorem 7.8.3

(a) The least squares solutions of a linear system AX = b are the exact solutions of the
normal equation

A'Ax = A"b (11)
(b) If A has full column rank, the normal equation has a unique solution, namely
x=(ATA)"ATD (12)

(¢) If A does not have full column rank, then the normal equation has infinitely many
solutions, but there is a unique solution in the row space of A. Moreover, among all
solutions of the normal equation, the solution in the row space of A has the smallest
norm.

* Proof: (a) done

* (b). Theorem 7.5.10 implies ATA is invertible.
* (c) omit.

 Example 3.



Error vector

* b=proj col(A)b + proj null(A)'(b).
* b-Ax = (proj_col(A)b — Ax)+ proj_null(AT)b.
* By (7) proj_col(A)b-Ax=0 if x is Iss.
* b-Ax’=proj_null(AT)b.
* Least squares error=||b-Ax"| |
=| | proj_null(AT)b]|.

Theorem 7.8.4 A vector X is a least squares solution of Ax = b if and only if the error
vector b — AX is orthogonal to the column space of A.

 Example 4.



Fitting a curve to experimental

data
Data (x_1,y_1), (x_2,y_2),...,(x_n, y_n).
y=a+bx. Find the best a, b.

If the line passes through the data, then
Mv=y where

1 xl- -y1-
1 x a

M=| .Z,V=H,y=y.2
S b :
_1 X, V]




MTMv=Mty. Normal system

If the x-coordinates are all distinct, then M has
column rank 2 which is full,

v=(MTM)*M'y.
v gives us y=ax+b, the least squares line of
best fit or regression line.

What is minimizes is
S=(y_1-(a+bx_1))*+...+(y_n —(a+bx_n))?, the
squares of residuals.

Example 5.



Least squares by higher-degree
polynomials
e Data(x 1,y 1),(x 2,y 2),...,(x_n,y _n).
e y=a_0+a_1x+..+a_mx™. (m < n-1)

* Again, we can write this as:

My =y,
i , -
I x x5 - X
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2 m
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If m>n-1, then exact solutions exist. (Lagrange
interpolation formula)

If m < n-1, we need to find the best solution.
v=(MTM)tMTy.

Example 7 to find the gravitational
constant.(Read yourselves.)



