7.8 Best approximation and least squares

We wish to find the best approximation to the solutions.

Minimum distance problem

The Minimum Distance Problem in \mathbb{R}^n Given a subspace W and a vector \mathbf{b} in \mathbb{R}^n , find a vector $\hat{\mathbf{w}}$ in W that is closest to \mathbf{b} in the sense that $\|\mathbf{b} - \hat{\mathbf{w}}\| < \|\mathbf{b} - \mathbf{w}\|$ for every vector \mathbf{w} in W that is distinct from $\hat{\mathbf{w}}$. Such a vector $\hat{\mathbf{w}}$, if it exists, is called a *best approximation to* \mathbf{b} *from* W (Figure 7.8.1).

Answer:

Theorem 7.8.1 (*Best Approximation Theorem*) If W is a subspace of \mathbb{R}^n , and **b** is a point in \mathbb{R}^n , then there is a unique best approximation to **b** from W, namely $\hat{\mathbf{w}} = \operatorname{proj}_W \mathbf{b}$.

- Distance from b to a subspace W.
- d=||b-proj_W(b)||=||proj_W^c(b)||.

Least square solutions of the linear system.

- Ax=b.
- If this is inconsistent, minimize | |b-Ax||.

Definition 7.8.2 If A is an $m \times n$ matrix and **b** is a vector in R^m , then a vector $\hat{\mathbf{x}}$ in R^n is called a *best approximate solution* or a *least squares solution* of $A\mathbf{x} = \mathbf{b}$ if

$$\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\| \tag{5}$$

for all \mathbf{x} in R^n . The vector $\mathbf{b} - A\hat{\mathbf{x}}$ is called the *least squares error vector*, and the scalar $\|\mathbf{b} - A\hat{\mathbf{x}}\|$ is called the *least squares error*.

Finding the least squares solutions of linear systems.

- Ax=b.
- Ax is in col(A).
- ||b-Ax|| is minimized when Ax=proj_col(A)b.
- This is consistent. Every system has the least squares solution.
- b-Ax=b-proj_col(A)b.
- $A^{T}(b-Ax)=A^{T}(b-proj_col(A)b)$.
- proj_null(A^T)b=b-proj_col(A)b.
- Thus, $A^{T}(b-Ax)=O$ or $A^{T}Ax=A^{T}b$.
- This is called the normal equation associated with Ax=b.

Theorem 7.8.3

(a) The least squares solutions of a linear system $A\mathbf{x} = \mathbf{b}$ are the exact solutions of the normal equation

$$A^T A \mathbf{x} = A^T \mathbf{b} \tag{11}$$

(b) If A has full column rank, the normal equation has a unique solution, namely

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b} \tag{12}$$

- (c) If A does not have full column rank, then the normal equation has infinitely many solutions, but there is a unique solution in the row space of A. Moreover, among all solutions of the normal equation, the solution in the row space of A has the smallest norm.
- Proof: (a) done
- (b). Theorem 7.5.10 implies A^TA is invertible.
- (c) omit.
- Example 3.

Error vector

- $b=proj_col(A)b + proj_null(A)^{T}(b)$.
- b-Ax = $(proj_col(A)b Ax) + proj_null(A^T)b$.
- By (7) proj_col(A)b-Ax=0 if x is lss.
- b-Ax'=proj_null(A^T)b.
- Least squares error=||b-Ax'||
 =||proj_null(A^T)b||.

Theorem 7.8.4 A vector $\hat{\mathbf{x}}$ is a least squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if the error vector $\mathbf{b} - A\hat{\mathbf{x}}$ is orthogonal to the column space of A.

• Example 4.

Fitting a curve to experimental data

- Data (x_1,y_1), (x_2, y_2),...,(x_n, y_n).
- y=a+bx. Find the best a, b.
- If the line passes through the data, then
- Mv=y where

$$M = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, v = \begin{bmatrix} a \\ b \end{bmatrix}, y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

- M^TMv=M^ty. Normal system
- If the x-coordinates are all distinct, then M has column rank 2 which is full,
- $V = (M^TM)^{-1}M^Ty$.
- v gives us y=ax+b, the least squares line of best fit or regression line.
- What is minimizes is S=(y_1-(a+bx_1))²+...+(y_n -(a+bx_n))², the squares of residuals.
- Example 5.

Least squares by higher-degree polynomials

- Data (x_1,y_1), (x_2, y_2),...,(x_n, y_n).
- $y=a_0+a_1x+...+a_mx^m$. (m < n-1)
- Again, we can write this as:

$$Mv = y,$$

$$M = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^m \\ 1 & x_2 & x_2^2 & \cdots & x_2^m \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^m \end{bmatrix}$$

- If m≥n-1, then exact solutions exist. (Lagrange interpolation formula)
- If m < n-1, we need to find the best solution.
- $V = (M^TM)^{-1}M^Ty$.
- Example 7 to find the gravitational constant.(Read yourselves.)