

QR-decomposition

- ♦ A mxk matrix with columns w_1,w_2,...,w_k. m-vectors.
- \Rightarrow We find an orthonomal basis q_1,q_2,...,q_k,q_k+1,...,q_m of R^m.
- ♦ Then since q_i is orthogonal to w_1,...,w_k-1.
 - + w_1=(w_1.q_1)q_1
 - + w_2=(w_2.q_1)q_1+(w_2.q_2).q_2.
 - *****
 - + w_k=(w_k.q_1)q_1+(w_k.q_2)q_2+...+(w_k.q_k)q_k.

♦ Use Theorem 3.1.8, A=QR

$$\begin{bmatrix} w_1 & w_2 & \cdots & w_k \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & \cdots & q_k \end{bmatrix} \begin{bmatrix} (w_1 \cdot q_1) & (w_2 \cdot q_1) & \cdots & (w_1 \cdot q_k) \\ 0 & (w_2 \cdot q_2) & \cdots & (w_2 \cdot q_k) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & (w_k \cdot q_k) \end{bmatrix}$$

Theorem 7.10.1 (*QR-Decomposition*) If A is an $m \times k$ matrix with full column rank, then A can be factored as

$$A = QR \tag{4}$$

where Q is an $m \times k$ matrix whose column vectors form an orthonormal basis for the column space of A and R is a $k \times k$ invertible upper triangular matrix.

♦ A=QR.

- * Assume A is a square matrix mxm.
- * Then $Q^TQ = I$ since $(Q^TQ)_{ij} = q_i^Tq_j = 1$ (i=j), 0 (i,j different) -> Q is orthogonal.
- \Rightarrow Since the inverse of Q is Q^T, we have R=Q^TA.
- ♦ See Example 1.

QR-decompositions and the least square problem

- \Rightarrow Ax=b. best approximate solution x'=(A^TA)-1A^Tb.
- Φ We write A=QR. A^T=R^TQ^T.
- $+ A^TAx'=A^Tb$.
- $R^TQ^TQRx'=R^TQ^Tb$.
- \Rightarrow R^TRx'=R^TQ^Tb and x'=R⁻¹Q^Tb.

Theorem 7.10.2 If A is an $m \times k$ matrix with full column rank, and if A = QR is a QR-decomposition of A, then the normal system for $A\mathbf{x} = \mathbf{b}$ can be expressed as

$$R\mathbf{x} = Q^T \mathbf{b} \tag{9}$$

and the least squares solution can be expressed as

$$\hat{\mathbf{x}} = R^{-1} Q^T \mathbf{b} \tag{10}$$

- → Example 2.
- ♦ We will use Householder reflections to find Q instead since it has advantages in computer calculations.
- * We obtain a formula for reflections:
 - ♦ Let a^c be the orthogonal hyperplane to span{a}
 - + x-refl_a^c(x)=2proj_a(x).
 - + Thus refl_a^c(x)=x-2proj_a(x)=x-2a(x.a)/||a||².

Definition 7.10.3 If **a** is a nonzero vector in \mathbb{R}^n , and if **x** is any vector in \mathbb{R}^n , then the *reflection of* **x** *about the hyperplane* \mathbf{a}^{\perp} is denoted by $\operatorname{refl}_{\mathbf{a}^{\perp}}\mathbf{x}$ and defined as

$$\operatorname{refl}_{\mathbf{a}^{\perp}} \mathbf{x} = \mathbf{x} - 2\operatorname{proj}_{\mathbf{a}} \mathbf{x} \tag{11}$$

The operator $T: \mathbb{R}^n \to \mathbb{R}^n$ defined by $T(\mathbf{x}) = \operatorname{refl}_{\mathbf{a}^{\perp}} \mathbf{x}$ is called the *reflection of* \mathbb{R}^n *about the hyperplane* \mathbf{a}^{\perp} .

- \Rightarrow Thus the matrix H_a^c for refl_a^c is H_a^c=I-2aa^T/a^Ta.
- \Rightarrow If a is a unit vector u, then $u^Tu = ||u||^2 = 1$.
- \Rightarrow refl_a^c=x-2(x.u)u and H_u^c=I-uu^T.
- ♦ See Example 3 and 4.

Definition 7.10.4 An $n \times n$ matrix of the form

$$H = I - \frac{2}{\mathbf{a}^T \mathbf{a}} \mathbf{a} \mathbf{a}^T \tag{16}$$

in which **a** is a nonzero vector in \mathbb{R}^n is called a *Householder matrix*. Geometrically, H is the standard matrix for the Householder reflection about the hyperplane \mathbf{a}^{\perp} .

Theorem 7.10.5 Householder matrices are symmetric and orthogonal.

 \Rightarrow Proof: H^T=I-(2/a^Ta)(aa^T)^T=H. HH=(I-2aa^T/a^Ta) (I-2aa^T/a^Ta)=I-4aa^T/a^Ta +(2aa^T/(a^Ta))(2aa^T/(a^Ta))=I (since 4(1/(a^Ta)²)(aa^Taa^T) = 4(1/(a^Ta)²)((a^Ta)aa^T)=4(1/(a^Ta))(aa^T).)

Theorem 7.10.6 If \mathbf{v} and \mathbf{w} are distinct vectors in \mathbb{R}^n with the same length, then the Householder reflection about the hyperplane $(\mathbf{v} - \mathbf{w})^{\perp}$ maps \mathbf{v} into \mathbf{w} , and conversely.

QR-decomposition using householder reflections

- ♦ The steps given A nxn matrix
- We apply a Householder matrix Q_1 so that Q_1A has $(||a_1||,0,...,0)$ as the first column by choosing Q_1 so that Q_1a_1=[||a_1||,0,...,0]^T.
- ♦ Now choose Q_2 which is 1 at (1,1)-entry and zero on elsewhere in the 1-st row and the 1-st column.
- Now concentrate on (n-1)x(n-1)-matrix in Q_1A removing 1st column and the 1st-row
- \bullet Q_2 sends the 2nd column a'_2 of Q_1A to [*,x,0,..,0]^T, nonzero x.
- ♦ We keep doing this... Q_n-1...Q_2Q_1A is upper triangular. We let it be R and Q=Q_1Q_2...Q_n-1. (notice the order change!)

