8.2 Similarity and diagonalizability

Coordinate change for diagonalization

Similar matrices

Definition 8.2.1 If A and C are square matrices with the same size, then we say that C is similar to A if there is an invertible matrix P such that $C = P^{-1}AP$.

A≈B,B≈C->A≈C. A≈A. A≈B->B≈A

Theorem 8.2.2 Two matrices are similar if and only if there exist bases with respect to which the matrices represent the same linear operator.

Proof: C=P⁻¹AP. If P=[v_1,...,v_n], then by equation (20) Sec.8.1, we have [T]_B=P⁻¹[T]P where [T]=A.

Similarity Invariants

- Coordinate changes are superficial changes.
- Many essential properties remain.
- $det(P^{-1}AP)=det(P)^{-1}det(A)det(P)=det(A)$.

Theorem 8.2.3

- (a) Similar matrices have the same determinant.
- (b) Similar matrices have the same rank.
- (c) Similar matrices have the same nullity.
- (d) Similar matrices have the same trace.
- (e) Similar matrices have the same characteristic polynomial and hence have the same eigenvalues with the same algebraic multiplicities.
 - Example 1.

Eigenvectors and eigenvalues of similar matrices

- The algebraic multiplicity of an eigenvalue is the multiplicity as a root of the characteristic polynomial.
- The geometric multiplicity of an eigenvalue is the dimension of (LI-A)x=0.
- geom mult. ≤ alg. mult.
- Example 2.

Theorem 8.2.4 Similar matrices have the same eigenvalues and those eigenvalues have the same algebraic and geometric multiplicities for both matrices.

- Proof: C=P⁻¹AP. Then
 - \circ LI-C=LI-P⁻¹AP = P⁻¹(LI-A)P.
 - odet(LI-C)=det(LI-A).
 - \circ (LI-C)x=0 <-> P⁻¹(LI-A)Px=0. <-> (LI-A)y=0 for y=Px. (substitute variable)
 - Thus dim sol (LI-C)x=0 is the same as dim sol(LI-A)x=0.

Theorem 8.2.5 Suppose that $C = P^{-1}AP$ and that λ is an eigenvalue of A and C.

- (a) If \mathbf{x} is an eigenvector of C corresponding to λ , then $P\mathbf{x}$ is an eigenvector of A corresponding to λ .
- (b) If \mathbf{x} is an eigenvector of A corresponding to λ , then $P^{-1}\mathbf{x}$ is an eigenvector of C corresponding to λ .
 - Proof (b): $Ax=Lx. -> P^{-1}Ax=LP^{-1}x$ -> $P^{-1}AP(P^{-1}x) = L(P^{-1}x)$ -> $C(P^{-1}x)=L(P^{-1}x)$.

Diagonalization

- We wish to change coordinates so that the matrix is diagonal.
- This is not always possible.

The Diagonalization Problem Given a square matrix A, does there exist an invertible matrix P for which $P^{-1}AP$ is a diagonal matrix, and if so, how does one find such a P? If such a matrix P exists, then A is said to be **diagonalizable**, and P is said to **diagonalize** A.

Theorem 8.2.6 An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

 Proof ->: A=PDP⁻¹ for a diagonal matrix D with diagonals

- AP=PD. P=[p_1,p_2,...,p_n]
- AP=[Ap_1,Ap_2,...,Ap_n]
- PD=[L_1p_1,L_2p_2,...,L_np_n]
- Thus Ap_i=L_ip_i.
- Proof <-: p_1,p_2,...,p_n linearly independent, eigenvectors.
 - Ap_i=L_ip_i.
 - Let P=[p_1,p_2,...,p_n].
 - The same computations show AP=PD.
 - Since P is invertible, P-1AP=D.

A method for diagonalizing a matrix.

Diagonalizing an $n \times n$ Matrix with n Linearly Independent Eigenvectors

- **Step 1.** Find *n* linearly independent eigenvectors of *A*, say $\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n$.
- **Step 2.** Form the matrix $P = [\mathbf{p}_1 \ \mathbf{p}_2 \ \cdots \ \mathbf{p}_n]$.
- **Step 3.** The matrix $P^{-1}AP$ will be diagonal and will have the eigenvalues corresponding to $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n$, respectively, as its successive diagonal entries.
 - Example 4.

Linear independence of eigenvectors

Theorem 8.2.7 If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are eigenvectors of a matrix A that correspond to distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$, then the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly independent.

 Thus, if some eigenvalues coincide, the corresponding eigenvectors may be dependent. (This is unless they are fundamental solutions.)

Some facts

Theorem 8.2.8 An $n \times n$ matrix with n distinct real eigenvalues is diagonalizable.

Theorem 8.2.9 An $n \times n$ matrix A is diagonalizable if and only if the sum of the geometric multiplicities of its eigenvalues is n.

Theorem 8.2.10 *If A is a square matrix, then:*

- (a) The geometric multiplicity of an eigenvalue of A is less than or equal to its algebraic multiplicity.
- (b) A is diagonalizable if and only if the geometric multiplicity of each eigenvalue of A is the same as its algebraic multiplicity.

Unifying theorem:

Theorem 8.2.11 If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) A is diagonalizable.
- (b) A has n linearly independent eigenvectors.
- (c) R^n has a basis consisting of eigenvectors of A.
- (d) The sum of the geometric multiplicities of the eigenvalues of A is n.
- (e) The geometric multiplicity of each eigenvalue of A is the same as the algebraic multiplicity.

