8 6 Singular value decomposition

DIAGONALIZATION
USING TWO
ORTHOGONAL
MATRICES




Diagonalizations

PDPT. A symmetric P orthogonal
PHPT Hessenberg A non-symmetric
PSPT Schur decomposition

A=PJP-1, A any J Jordan form, P
iInvertible only. This is sensitive to round
off errors.

A=USVT, U,V orthogonal, S diagonal
with positive or zero entries in the
diagonal.




Theorem 8.6.1 If A is an n x n matrix of rank k, then A can be factored as

A=Uxv?!

where U and V are n x n orthogonal matrices and X is an n X n diagonal matrix whose
main diagonal has k positive entries and n — k zeros.

@ proof: ATA is symmetric.
e ATA=VDVT for D diagonal, V orthogonal.

» The diagonal elements of D are eigenvalues of

ATA. The column vectors of V are eigenvectors
of ATA.

e If xis an e1genvector of ATA, then

AX.Ax=x.ATAx=x.Ix=l(x.x), | is nonnegative.
* Rank A=rank ATA=rank D. (Th. 7.5.8,8.2.3.)

* We let V be arranged so that the corresponding
eigenvalues are decreasing.

o Thus| 12 2=...2 k>0, | k+1=..=| n=0.




Consider {Av_1,Av_2,...,Av_n}

Av_i,Av_j=v i.,ATAv j=v il jv j=

| j(v_i.v_j) =0 for i #] by the orthogonality of
V_is.
[|Av_i||?>=Av_i.Av_i=v_i.ATAv j=v il iv_i

=1 i(v_i.v_i)=l_i.

JAV_i||=V L.

{Av_1,...,Av_k} the basis of the column
space of A. (col rank A=rank A=k)

We normalize to obtainu_1,...,u_Kk.
u_ji=Av_j/||Av_j|| = Av_jiN |_j.

Av_ =N | ju j

Extend to an orthonormal basis u_1,...,u_n.
Let U=[u_1,..,u k,u k+1,...,u n]




Let S be the diagonal matrix with diagonal
entries V1 1,V 1 2.4 1 k,0,..,0.

Then US=[V I 1u 1N 1 2u 2,...N | k,
0,..,0]

=[Av_1,Av _2,..,Av_k, Av_k+1,..,Av_n]=AV.

Thus, A=USV'.




Theorem 8.6.2 (Singular Value Decomposition of a Square Matrix) If A isan

n X n matrix of rank k, then A has a singular value decomposition A = UX V!
in which:

(@) V=[vy vy --- v,]orthogonally diagonalizes A’A.

(b) The nonzero diagonal entries of X are

O'1=\/)\.—1,O’2=\/)\4_,...,O'k:\/ﬁ

where Ay, My, . .., A are the nonzero eigenvalues of A'A
corresponding to the column vectors of V.

(¢) The column vectors of V are ordered so thatoy > 0y > --- > o > 0.

AV,’ 1
d) u; = =
|Av: || o

(e) {uy,uy,...,w}is an orthonormal basis for col(A).

AVl' (l=1,2,,k)

(f){u,u, ..., 0, Wy, ..., u,} is an extension of {u;, Uy, ..., u;} to
an orthonormal basis for R".




Example 1.
Singular value decomposition of
symmetric matrices.

A symmetric.
A=PDPT.

D may have negative eigenvalues.

Let S be the diagonal matrix with the
absolute values of the diagonal entries of D
arranged the right way.

Then A=PSVT. We put some negative signs
to the columns of V.

Example 2.




Polar decompositions

Theorem 8.6.3 (Polar Decomposition) If A is an n x n matrix of rank k, then A can be factored
as

A= PO 9)

where P is an n X n positive semidefinite matrix of rank k, and Q is an n X n orthogonal matrix.
Moreover, if A is invertible (rank n), then there is a factorization of form (9) in which P is positive
definite.

® Proof: A=USVT=(USUNUVT) =PQ
e rank P=rankS=k.

e Ainvertible -> k=n -> S positive definite -> P
positive definite.

® Example 3.




Theorem 8.6.4 (Singular Value Decomposition of a General Matrix) If A is an m x n matrix
of rank k, then A can be factored as

A=UEVT=[U1 up

in which U, X, and V have sizes m x m, m X n, and n X n, respectively, and in which:

(@ V=1I[v, v, --- v,]orthogonally diagonalizes ATA.

(b) The nonzero diagonal entries of X are 0y = /A1, 02 = /A2, ..., Or = /Ay, where
A1, A2, ..., Ag are the nonzero eigenvalues of ATA corresponding to the column vectors
of V.

(c¢) The column vectors of V are ordered so that oy > 0, > --- > o > 0.
AV,‘ 1 .
d) v = = — Ay, i=1,2,...,k)
|AV:[| o
(e) {uy,uy,...,u}is an orthonormal basis for col(A).
(f) {uy,uy, ..., 0, Wy, ..., 0,} is an extension of {u;, uy, ..., u} to an orthonormal

basis for R™.




u 1,...,u_k, the left singular vectors of A.

v_1,...,v_k, the right singular vectors of
A.

Example 4.




Singular value decompositions
and the fundamental spaces

Theorem 8.6.5 If A is an m x n matrix with rank k, and if A = UX V7T is the singular
value decomposition given in Formula (12), then:

(a) {uy,uy,...,u}is an orthonormal basis for col(A).
(D) {uryq u,,} is an orthonormal basis for col(A)* = null(AT).
v} is an orthonormal basis for row(A).

d) {Vkt1, ..., Vn) is an orthonormal basis for row(A)* = null(A).

® Proof: (a) u_1,..,u_k. normalized from
Av_is. Thus a basis of col(A).

@ (b) col(A)° has basis u_k+1,..,u n




(d): v_1,..,v_n orthonormal set of

eigenvectors of ATA.
v_k+1, ..., v._ncorrtoO.

Thus v_k+1,..,v_n the orthonormal basis of
null ATA=nullA of dim n-k.

(d) proved.

(c): v_1,..,v_k. are in null(A)*=row(A).

row(A) has dimension k. Thus, v_1,..,v_kK
form an orthonormal basis of row(A).




Reduced singular value
decompositions

We can remove zero rows and zero
columns from S.

We also eliminate u_k+1,.,u_n,

vl k+1,...vT n.

A= U_1 mka_1 kxkv_1 kxn_

A=s 1u 1v _1T+s 2u 2v 17+...+s ku k
v_kT.

Example 5.




Data compression and image
processing.

We can omit small terms In
A=s 1u 1v _1T+s 2u 2v 17+...+s ku k
v_kT.

This decrease the amount one has to

store and get approximate images.




Singular value decomposition from the
transformation point of view.

T _A:R"->Rm

Use basis B=[v_1,...,v_n] for R".

B=[u 1,..,.u n] forR™.

Then [T _A] B,B’=S.

Thus, In this coordinate, one collapses

inv_k+1,..,v_n direction and multiply by
s 1,.,s kinu 1,...,u _kdirection....




8 7 Pseudo-inverse

A=U 1S 1V _1T. mxk, kxk,nxn.

If A is an invertible nxn-matrix, then S_1
Is nxnand so U 1,V_1 are nxn.

A=V 1S 11U 1T

Suppose A is not nxn or invertible, then
k<n.

We define pseudo-inverse
A*=V_ 1S 11U 1T eqgn. (2)




® Example 1.

Theorem 8.7.1 If A is an m x n matrix with full column rank, then
AT = (ATA)"lAT
® Proof: A=U_1S 1V _1T.

e ATA=(V_1S _1TU 1T}(U_1S 1V_1T)
=V_1S 12V_1T,

o A full rank -> ATA invertible. V nxn-matrix.
(ATAY'=V 1S 12V 1T,
(ATAY'AT=V_ 1S 12V 1 (V_1S_ 17U 1T7)
=V 1S _ 1-'U 1T = A*




Properties of the pseudo-

Inverses.

Theorem 8.7.2 If A" is the pseudoinverse of an m x n matrix A, then:
(a) AATA=A
(b) ATAAT = AT
(c) (AAT)T = AAT
d) (ATA)T = ATA
(e) (ATt =(@AahH!
(fHATT=A

® Proof. computations using (2) and
* V_1™V_ 1=l (kxk-matrix)

o UTU=I (kxk-matrix.)




Theorem 8.7.3 IfAT =V, X[ U [ is the pseudoinverse of an m x n matrix A of rank k,

and if the column vectors of U, and Vi are ui,uy, ..., u; and vy, vy, ..

then:
(a) Aty is intow(A) for every vectory in R™.
1
(b) Atu; = —v; i=1,2,...,k)
(c) Aty = 0 for every vectory in null(AT).
d) AAT is the orthogonal projection of R™ onto col(A).
(e) ATA is the orthogonal projection of R" onto row(A).

Proof: (d) AA*= (U_1S_1V_1T)V_1S_1-'U_1T7
=U_1U_1T7 = proj_span{u_1,...,u_k} = proj_col(A)
(Theorem 8.6.5(a).

(e))A*A=V_1S 1-'U 1T (U_1S_1V_10)=V_1V_1T
= proj_span{v_1,..,v_k}=proj_row(A) (Theorem 8.6.5 (c))

., Vi, respectively,




Pseudo-inverses and the least

squares

If A has full column rank, then ATA is
Invertible and Ax=b has the unique least
squares solution

x=(ATA)TATb=A*b. (Theorem 7.8.3)

If A does not have a full rank, by
Theorem 7.8.3, there is a unique one in
the row space of A. (minimum norm

one.)




Theorem 8.7.4 If A is an m x n matrix, and b is any vector in R™, then
x=A"b

is the least squares solution of Ax = b that has minimum norm.

Proof: x=A*b =V_1S_1U_1Tb

Thus, (ATA)A*b=V_1S 1?2V _1V_1S 1-'U 1'b
=V 1S 12S 1-'U 1T b=V_1S 1U 1Tb=ATb.
Thus x satisfies the least squares equation (10) p.395.

By Theorem 7.8.3, if x is in the row space of A, we are done.
Theorem 8.7.3 implies that x is in row(A).




Condition numbers

If some eigenvalues of A is zero or close
to zero, then Ax=b iIs said to be ill
conditioned.

If the system is ill conditioned, then
errors can become large.... ATA has too
many problems.




