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Figure 1: A wall paper group. p2: Four rotations of order 2 at vertices of tiled rectan-
gles.

Figure 2: A (2, 3, 6)-triangle group.

Abstract
Abstract: In this talk, we will define the topological objects called orbifolds. This

notion generalizes that of manifolds and is useful in some areas of mathematics related
to studying discrete group actions. We give some examples and show the existence of
a universal cover and define the fundamental groups. We also study 2-orbifolds by cut
and paste methods.

1 Discrete groups

1.1 Theory of discrete groups
1.1.1 Examples

Examples

Examples
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An example of constructing orbifolds, a pillow in this case.

• Consider the discrete group generated by order two rotations at (kn, lm) for
l,m ∈ Z2 and fixed k, l > 0.

• Cut a rectangle containing two rotations on the top and the bottom sides and glue
by an isometry given by the composition of the two roations.

• Then we crease the top circle and the bottom circle at the cone-points and glue.
(This is called folding)

• Notice the freedom k, l and the choice of two bottom cone-points relative to the
top two cone points.

• Hence, there is a 3 degrees of freedom.

An example of constructing orbifolds, a pillow in this case.

1.1.2 Definitions

Discrete groups and discrete group actions

• A discrete group is a group with a discrete topology. (Usually a finitely generated
subgroup of a Lie group.) Any group can be made into a discrete group.

• We have many notions of a group action Γ×X → X:

– The action is effective, is free

– The action is discrete if Γ is discrete in the group of homeomorphisms of
X with compact open topology.

– The action has discrete orbits if every x has a neighborhood U so that the
orbit points in U is finite.
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– The action is wandering if every x has a neighborhood U so that the set of
elements γ of Γ so that γ(U) ∩ U 6= ∅ is finite.

– The action is properly discontinuous if for every compact subset K the set
of γ such that K ∩ γ(K) 6= ∅ is finite.

• discrete action < discrete orbit < wandering < properly discontinuous. This is a
strict relation (Assuming X is a manifold.)

• The action is wandering and free and gives manifold quotient (possibly non-
Hausdorff)

• The action of Γ is free and properly discontinuous if and only if X/Γ is a mani-
fold quotient (Hausdorff) and X → X/Γ is a covering map.

• Γ a discrete subgroup of a Lie group G acting on X with compact stabilizer.
Then Γ acts properly discontinuously on X .

• A complete (X,G)-manifold is one isomorphic to X/Γ.

• X/Γ is isomorphic to X/Γ′ iff Γ′ = gΓg−1 for g ∈ G.

• Suppose X is simply-connected. Given a manifold M , the set of complete
(X,G)-structures on M up to (X,G)-isotopies are in one-to-one correspon-
dence with the discrete representations of π(M)→ G up to conjugations.

Examples

• R2 − {O} with the group generated by g1 : (x, y) → (2x, y/2). This is a free
wondering action but not properly discontinuous.

• R2 − {O} with the group generated by g : (x, y) → (2x, 2y). (free, properly
discontinuous.)

• The modular group PSL(2,Z) the group of Mobius transformations or isome-
tries of hyperbolic plane given by z 7→ az+b

cz+d for integer a, b, c, d and ad− bc =
1. http://en.wikipedia.org/wiki/Modular_group. This is not a
free action.

The action of PSL(2,Z).
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1.2 The Poincare fundamental polyhedron theorem
1.2.1 Convex polyhedrons

Convex polyhedrons

• A convex subset of Hn is a subset such that for any pair of points, the geodesic
segment between them is in the subset.

• Using the Beltrami-Klein model, the open unit ball B, i.e., the hyperbolic space,
is a subset of an affine patch Rn. In Rn, one can talk about convex hulls.

• Some facts about convex sets:

– The dimension of a convex set is the least integer m such that C is con-
tained in a unique m-plane Ĉ in Hn.

– The interior Co, the boundary ∂C are defined in Ĉ.
– The closure of C is in Ĉ. The interior and closures are convex. They

are homeomorphic to an open ball and a contractible domain of dimension
equal to that of Ĉ respectively.

Examples of Convex polytopes

• A compact simplex: convex hull of n+ 1 points in Hn.

• Start from the origin expand the infinitesimal euclidean polytope from an interior
point radially. That is a map sending xi → expO(sxi) for s > 0 and xi is the
coordinate vertex vector of at T0. Then take the convex hull of the image vertices.
Thus for any Euclidean polytope, we obtain a one parameter family of hyperbolic
polytopes.
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Regular dodecahedron with all edge angles π/2

1.2.2 Fundamental domains and tessellations

Fundamental domain of discrete group action

• Let Γ be a group acting on X .

• A fundamental domain for Γ is an open domain F so that {gF |g ∈ Γ} is a
collection of disjoint sets and their closures cover X .

• The fundamental domain is locally finite if the above closures are locally finite.

• The Dirichlet domain for u ∈ X is the intersection of all Hg(u) = {x ∈
X|d(x, u) < d(x, gu)}. Under nice conditions, D(u) is a convex fundamen-
tal polyhedron.

• The regular octahedron example of hyperbolic surface of genus 2 is an example
of a Dirichlet domain with the origin as u.

Tessellations

• A tessellation of X is a locally-finite collection of polyhedra covering X with
mutually disjoint interiors.

• Convex fundamental polyhedrons provide examples of exact tessellations.

• If P is an exact convex fundamental polyhedron of a discrete group Γ of isome-
tries acting on X , then Γ is generated by Φ = {g ∈ Γ|P ∩ g(P ) is a side of P}.

1.2.3 The Poincare fundamental polyhedron theorem

The regular octahedron with side parings with vertex angle π/4.

6



b1

a1

b2'

a2'

b2

a2

b1'

a1'

A
B

C

D

E

F

G

H

K

<)b1a1'= 0.248

• (a1, D), (a1′,K), (b1′,K), (b1, B), (a1′, B), (a1, C), (b1, C),

• (b1′, H), (a2, H), (a2′, E), (b2′, E), (b2, F ), (a2′, F ), (a2, G),

• (b2, G), (b2′, D), (a1, D), (a1′,K), ...

Side pairings and Poincare fundamental polyhedron theorem

• Given a side S of an exact convex fundamental domain P , there is a unique
element gS such that S = P ∩ gS(P ). And S′ = g−1

S (S) is also a side of P .

• gS′ = g−1
S since S′ = P ∩ g−1

S .

• Γ-side-pairing is the set of gS for sides S of P .

• The equivalence class at P is generated by x ∼= x′ if there is a side-pairing
sending x to x′ for x, x′ ∈ P .

• [x] is finite and [x] = P ∩ Γ.

• Cycle relations (This should be cyclic):

– Let S1 = S for a given side S. Choose the side R of S1. Obtain S′1. Let
S2 be the side adjacent to S′1 so that gS1

(S′1 ∩ S2) = R.

– Let Si+1 be the side of P adjacent to S′i such that gSi
(S′i∩Si+1) = S′i−1∩

Si.

• Then

– There is an integer l such that Si+l = Si for each i.

–
∑l
i=1 θ(S

′
i, Si+1) = 2π/k.

– gS1
gS2

....gSl
has order k.
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• Example: the octahedron in the hyperbolic plane giving genus 2-surface.

• The period is the number of sides coming into a given side R of codimension
two.

• Poincare fundamental polyhedron theorem is the converse. (See Kapovich P.
80–84):

• Given a convex polyhedron P in X with side-pairing isometries satisfying the
above relations, then P is the fundamental domain for the discrete group gener-
ated by the side-pairing isometries.

• If every k equals 1, then the result of the face identification is a manifold. Oth-
erwise, we obtain orbifolds.

• The results are always complete.

• See Jeff Weeks http://www.geometrygames.org/CurvedSpaces/
index.html

Reflection groups

• A discrete reflection group is a discrete subgroup in G generated by reflections
in X about sides of a convex polyhedron. Then all the dihedral angles are sub-
multiples of π.

• Then the side pairing such that each face is glued to itself by a reflection satisfies
the Poincare fundamental theorem.

• The reflection group has presentation {Si : (SiSj)
kij} where kii = 1 and kij =

kji.

• These are examples of Coxeter groups. http://en.wikipedia.org/wiki/
Coxeter_group

Dodecahedral reflection group
One has a regular dodecahedron with all edge angles π/2 and hence it is a funda-

mental domain of a hyperbolic reflection group.
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Triangle groups

• Find a triangle in X with angles submultiples of π.

• We divide into three cases π/a+ π/b+ π/c > π,= π,< π.

• We can always find ones for any integers a, b, c.

– > π cases: (2, 2, c), (2, 3, 3), (2, 3, 4), (2, 3, 5) corresponding to dihedral
group of order 4c, a tetrahedral group, octahedral group, and icosahedral
group.

– = π cases: (3, 3, 3), (2, 4, 4), (2, 3, 6).

– < π cases: Infinitely many hyperbolic tessellation groups.

• (2, 4, 8)-triangle group

• The ideal example http://egl.math.umd.edu/software.html

2 Pseudo-group and G-structures

2.1 Pseudo-groups
Pseudo-groups

• In this section, we introduce pseudo-groups.

• However, we are mainly interested in classical geometries, Clifford-Klein ge-
ometries. We will be concerned with a Lie group G acting on a manifold M .

• The most obvious one is the euclidean geometry where G is the group of rigid
motions acting on the euclidean space Rn. The spherical geometry is one where
G is the group O(n+ 1) of orthogonal transformations acting on the unit sphere
Sn.
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Pseudo-groups

• Topological manifolds form too large category to handle.

• To restrict the local property more, we introduce pseudo-groups. A pseudo-group
G on a topological space X is the set of homeomorphisms between open sets of
X so that

– The domains of g ∈ G cover X .

– The restriction of g ∈ G to an open subset of its domain is also in G.

– The composition of two elements of G when defined is in G.

– The inverse of an element of G is in G.

– If g : U → V is a homeomorphism for U, V open subsets of X . If U is a
union of open sets Uα for α ∈ I for some index set I such that g|Uα is in
G for each α, then g is in G.

• The trivial pseudo-group is one where every element is a restriction of the iden-
tity X → X .

• Any pseudo-group contains a trivial pseudo-group.

• The maximal pseudo-group of Rn is TOP , the set of all homeomorphisms be-
tween open subsets of Rn.

• The pseudo-group Cr, r ≥ 1, of the set of Cr-diffeomorphisms between open
subsets of Rn.

• The pseudo-group PL of piecewise linear homeomorphisms between open sub-
sets of Rn.

• (G,X)-pseudo group: Let G be a Lie group acting on a manifold X . Then we
define the pseudo-group as the set of all pairs (g|U,U) where U is the set of all
open subsets of X .

• The group isom(Rn) of rigid motions acting on Rn or orthogonal group
O(n+ 1,R) acting on Sn give examples.

2.2 G-manifold
G-manifold

A G-manifold is obtained as a manifold glued with special type of gluings only in
G.

• Let G be a pseudo-group on Rn. A G-manifold is a n-manifold M with a maxi-
mal G-atlas.
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• A G-atlas is a collection of charts (imbeddings) φ : U → Rn where U is an
open subset of M such that whose domains cover M and any two charts are
G-compatible.

– Two charts (U, φ), (V, ψ) are G-compatible if the transition map

γ = ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) ∈ G.

• One can choose a locally finite G-atlas from a given maximal one and conversely.

• A G-map f : M → N for two G-manifolds is a local homeomorphism so that if
f sends a domain of a chart φ into a domain of a chart ψ, then

ψ ◦ f ◦ φ−1 ∈ G.

That is, f is an element of G locally up to charts.

2.2.1 Examples

Examples

• Rn is a G-manifold if G is a pseudo-group on Rn.

• f : M → N be a local homeomorphism. If N has a G-structure, then so does M
so that the map is a G-map. (A class of examples such as θ-annuli and π-annuli.)

• Let Γ be a discrete group of G-homeomorphisms ofM acting properly and freely.
ThenM/Γ has a G-structure. The charts will be the charts of the lifted open sets.

• Tn has a Cr-structure and a PL-structure.

• Given (G,X) as above, a (G,X)-manifold is a G-manifold where G is the re-
stricted pseudo-group.

• A euclidean manifold is a (isom(Rn),Rn)-manifold.

• A spherical manifold is a (O(n+ 1),Sn)-manifold.

3 Topology of orbifolds

3.1 Definition of orbifolds
Definition of orbifolds

• Is there a good way to express the quotient spaces X/Γ?

• We should do this locally. Remember our quotient space like the pillow.

• In fact, X/Γ is given an orbifold structure.

• But orbifold structures are only slightly more general than X/Γ.
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Definition of orbifolds

• X a Hausdorff second countable topological space. Let n be fixed.

• An open subset Ũ in Rn with a finite group G acting smoothly on it. A G-
invariant map Ũ → O for an open subset O of X inducing a homeomorphism
Ũ/G→ O. An orbifold chart is such a triple (Ũ , G, φ).

• An embedding i : (Ũ , G, φ) → (Ṽ ,H, ψ) is a smooth imbedding i : Ũ → Ṽ
with φ = ψ ◦ i which induces the inclusion map U → V for U = φ(Ũ) and
V = φ(Ṽ ).

– Equivalently, i is an imbedding inducing the inclusion map U → V and
inducing an injective homomorphism i∗ : G→ H so that i ◦ g = i∗(g) ◦ i
for every g ∈ G. i∗(G) will act on the open set that is the image of i.

– Note here i can be changed to h ◦ i for any h ∈ H . The images of h ◦ i will
be disjoint for representatives h for H/i∗(G).

Definitions

• Two charts (Ũ , φ) and (Ṽ , ψ) are compatible if for every x ∈ U ∩ V , there is
an open neighborhood W of x in U ∩ V and a chart (W̃ ,K, µ) such that there
are embeddings to (Ũ , φ) and (Ṽ , ψ). (One can assume W is a component of
U ∩ V .)

• If we allow Ũ to be an open subset of the closed upper half space, then the
orbifold has boundary.

Definition of orbifold

• Since G acts smoothly, G acts freely on an open dense subset of Ũ .

• An orbifold atlas on X is a family of compatible charts {(Ũ , φ)} covering X .

• Two orbifold atlases are compatible if charts in one atlas are compatible with
charts in the other atlas.

• Atlases form a partially ordered set. It has a maximal element.

• Given an atlas, there is a unique maximal atlas containing it.

• An orbifold is X with a maximal orbifold atlas.

• One can obtain an atlas of linear charts only: that is, charts where Ũ is Rn and
G ⊂ O(n).
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3.1.1 Definitions

Definitions

• If we have Ũ with G acting freely, we can drop this from the atlas and replace
with many charts with trivial group.

• A map f : (X,U) → (Y,V) is smooth if for each point x ∈ X , there is a chart
(Ũ , G, φ) with x ∈ U and a chart (Ṽ ,H, ψ) with f(x) ∈ V so that f(V ) ⊂ U
and f lifts to f̃ : Ũ → Ṽ as a smooth map.

• Two orbifolds are diffeomorphic if there is a smooth orbifold-map with a smooth
inverse orbifold-map.

• x ∈ X . A local group Gx of x is obtained by taking a chart (Ũ , G, φ) around x
and finding the stabilizer Gy of y for an inverse image point y of x.

Definitions

• A singular set is a set of points where Gx is not trivial.

• The subset of the singular set where Gx is constant is a relatively closed sub-
manifold.

• Thus X becomes a stratified smooth topological space where the strata is given
by the conjugacy classes of Gx.

• A suborbifold Y of an orbifold X is an imbedded subset such that for each point
y in Y and and a chart (Ṽ , G, φ) of X for a neighborhood V of y there is a chart
for y given by (P,G|P, φ) where P is a closed submanifold of Ṽ where G acts
on and G|P is the image of the restriction homomorphism of G to P . (Compare
with P. 35 of Adem.)

2-orbifolds

• Recall that 2-orbifold have three types of singularities: silvered points in open
arcs, isolated cone-points, and isolated corner-reflector points. The singular
points of a two-dimensional orbifold fall into three types:

(i) A mirror point: R2/Z2 where Z2 acts by reflections on the y-axis.

(ii) A cone-point of order n: R2/Zn where Zn acting by rotations by angles
2πm/n for integers m.

(iii) A corner-reflector of order n: R2/Dn where Dn is the dihedral group gen-
erated by reflections about two lines meeting at an angle π/n.

15



2-orbifolds

• The actions here are isometries on R2.

•

3-orbifolds

• For 3-orbifolds, the singularities are either a mirror point on 2-dimensional sur-
face of silvered points or

• a singularity on a 1-dimensional manifolds of singularities of order n

• a singularity on the end of three 1-dimensional manifolds of singularities p, q, r
where (p, q, r) = (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5).

• a singularity on the vertex where three silvered surfaces meet with edges be-
ing three 1-dimensional manifolds of singularities 2p, 2q, 2r where (p, q, r) =
(2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5).

• an isolated singularity of order 2.

• See Hatcher’s Bianchi orbifolds.

3.1.2 Examples

Examples

• Clearly, manifolds are orbifolds.

• Let G be a finite group acting on a manifold M smoothly. Then M/G is a
topological space with an orbifold structure.

• Let M = Tn and Z2 act on it with generator acting by −I . For n = 2, M/Z2

is topologically a sphere and has four singular points. For n = 4, we obtain a
Kummer surface with sixteen singular points.

• Let X be a smooth surface. Take a discrete subset. For each point, take a disk
neighborhood D with a chart (D′, Zn, q) where D′ is a disk and Zn acts as a
rotation with O as a fixed point and q : D′ → D as a cyclic branched covering.
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Examples

• Given a manifold M with boundary. We can double it as a manifold and obtain
Z2-action. Then M has an orbifold structure.

• Take a surface and make the boundary be a union of piecewise smooth curves
with corners.

– The interior is given charts with trivial groups.

– The interior of a boundary curve is given charts with Z2 as a group. (sil-
vering)

– The corner point is given charts with a dihedral group as a group.

Examples

• An embedded arc in the surface orbifold as above ending at two silvered bound-
ary points is a one-dimensional suborbifold.

• Take a surface and make the boundary be a union of piecewise smooth curves
with corners.

– Some arcs are given Z2 as groups but not all.

– If two such arcs meet, then the vertex is given a dihedral group as a group.

– Then the union of the interiors of the remaining arcs is the boundary of the
orbifold.

– A nicely imbedded arc ending at a corner may not be a suborbifold unless
it is in the boundary of the surface.

3.2 Differentiable structures on orbifolds
Differentiable structures on orbifolds

• Suppose we are given smooth structures on each (Ũ , G, φ), i.e., Ũ is given a
smooth structure and G is a smooth action on it. We assume that all embeddings
in the atlas is smooth. Then M is given a smooth structure.

• Given a chart (Ũ , G, φ), the space of smooth forms is the space of smooth forms
in Ũ invariant under the G-action. A smooth form on the orbifold is the col-
lection of smooth forms on each of the charts so that under embeddings they
correspond.

• One can define an integral of smooth singular simplices into charts. This can be
extended to any smooth simplex using partition of unity and varicentric subdivi-
sions of the simplex.

• We can also define Riemannian structures, exponential maps, and curvatures..
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Gauss-Bonnet theorem

• Assuming thatX admits a finite smooth triangulation so that interior of each cell
lies in singularity with locally constant isotopy groups, then we define the Euler
characteristic to be

χ(X) =
∑
k

(−1)dim sk1/Nsk

where sk denotes the kth-cell and Nsk the order of the isotropy group.

• Such a triangulation always seem to exist always. (Proved in Verona.)

• Theorem (Allendoerfer-Weil, Hopf) Let M be a compact Riemannian orbifold
of even dimension m. Then

(2/Om)

∫
M

Kdw = χ(M),

where Om is the volume of the m-sphere.

• The proof essentially follows that of Chern for manifolds.

4 Covering spaces of orbifolds

4.1 Definition of the covering spaces of orbifolds
Covering spaces of orbifold

• Let X ′ be an orbifold with a smooth map p : X ′ → X so that for each point x of
X , there is a connected model (U,G, φ) and the inverse image of p(ψ(U)) is a
union of open sets with models isomorphic to (U,G′, π) where π : U → U/G′

is a quotient map and G′ is a subgroup of G. Then p : X ′ → X is a covering
and X ′ is a covering orbifold of X .

• Remember our R2 mapping to the pillow.

4.1.1 Examples

Examples (Thurston)

• Y a manifold. Ỹ a regular covering map p̃ with the automorphism group Γ. Let
Γi, i ∈ I be a sequence of subgroups of Γ.

– The projection p̃i : Ỹ×Γi\Γ→ Ỹ induces a covering pi : (Ỹ×Γi\Γ)/Γ→
Ỹ /Γ = Y where Γ acts by

γ(x̃,Γiγi) = (γ(x̃),Γiγiγ
−1)

– This is same as Ỹ /Γi → Y since Γ acts transitively on both spaces.

18



– Fiber-products Ỹ ×
∏
i∈I Γi\Γ→ Ỹ . Define left-action of Γ by

γ(x̃, (Γiγi)i∈I) = (γ(x̃), (Γiγiγ
−1)), γ ∈ Γ.

We obtain the fiber-product

(Ỹ ×
∏
i∈I

Γi\Γ)/Γ→ Ỹ /Γ = Y.

4.1.2 Definitions

Developable orbifold

• We can let Γ be a discrete group acting on a manifold Ỹ properly discontinuously
but maybe not freely.

• One can find a collection Xi of coverings so that

– Γi = {γ ∈ Γ|γ(Xi) = Xi} is finite and if γ(Xi)∩Xi 6= ∅, then γ is in Γi.

– The images of Xi cover Ỹ /Γ.

• Y = Ỹ /Γ has an orbifold quotient of Ỹ and Y is said to be developable.

• In the above example, we can let Γ be a discrete group acting on a manifold Ỹ
properly discontinuously but maybe not freely. Y f is then the fiber product of
orbifold maps Ỹ /Γi → Y .

Cone points, corner-reflectors

• We can let Dn be a linear dihedral group acting on a disk B2. Then B2/Dn is
given a corner-reflector orbifold structure. The maximal local group is Dn.

• One can find a collection Xi of coverings so that

– Xi = B2/Dm where m divides n.

– Xi = B2/Cm where m divides n where Cm is a cyclic group of order n.
for a cyclic group. It has a cone-point singularity.

– We can see these facts by paper-folding or origami.

Doubling an orbifold with mirror points

• A mirror point is a singular point with the stablizer group Z2 acting as a reflection
group.

• One can double an orbifoldM with mirror points so that mirror-points disappear.
(The double covering orbifold is orientable.)

– Let Vi be the neighborhoods of M with charts (Ui, Gi, φi).
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– Define new charts (Ui × {−1, 1}, Gi, φ∗i ) where Gi acts by (g(x, l) =
(g(x), s(g)l) where s(g) is 1 if g is orientation-preserving and −1 if not
and φ∗i is the quotient map.

– For each embedding, i : (W,H,ψ) → (Ui, Gi, φi) we define a lift (W ×
{−1, 1}, H, ψ∗)→ (Ui × {−1, 1}, Gi, φ∗i . This defines the gluing.

– The result is the doubled orbifold and the local group actions are orientation pre-
serving.

– The double covers the original orbifold with Galois group Z2.

• In the abstract definition, we simply letX ′0 be the orientation double cover ofX0

where G-acts on X ′ preserving the orientation.

• For example, if we double a corner-reflector, it becomes a cone-point.

4.1.3 Examples

Some Examples

• Clearly, manifolds are orbifolds. Manifold coverings provide examples.

• The pillow covered by a torus or R2.

• If one double a corner-reflector, one obtains a cone-point. Thus, a disk with
corner-reflectors is double-covered by a sphere with cone-points.

• The edge folded triangle covered by tori.

• Let Y be a tear-drop orbifold with a cone-point of order n. Then this cannot be
covered by any other type of an orbifold and hence is a universal cover of itself.

• A sphere Y with two cone-points of order p and q which are relatively prime.

• Choose a cyclic action of Y of order m fixing the cone-point. Then Y/Zm is an
orbifold with two cone-points of order pm and qm.

4.2 Universal covering spaces
Universal covering by fiber-product

• A universal cover of an orbifold Y is an orbifold Ỹ covering any covering orb-
ifold of Y .
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• We will now show that the universal covering orbifold exists by using fiber-
product constructions. For this we need to discuss elementary neighborhoods.
An elementary neighborhood is an open subset with a chart components of whose
inverse image are open subsets with charts.

• We can take the model open set in the chart to be simply connected.

• Then such an open set is elementary.

Fiber-product for Dn/Gi

• If V is an orbifold Dn/G for a finite group G.

– Any covering is Dn/G1 for a subgroup G1 of G.

– Given two covering orbifoldsDn/G1 andDn/G2, a covering morphism is
induced by g ∈ G so that gG1g

−1 ⊂ G2.

– The covering morphism is in one-to-one correspondence with the double
cosets of form G2gG1 for g such that gG1g

−1 ⊂ G2.

– The covering automorphism group of Dn/G′ is given by N(G1)/G1.

– Given coverings pi : Dn/Gi → Dn/G for Gi ⊂ G for V homeomorphic
to a cell, we form a fiber-product.

V f = (Dn ×
∏
i∈I

Gi\G)/G→ Dn/G

– If we choose all subgroupsGi ofG, then any covering ofDn/G is covered
by V f induced by projection to Gi-factor (universal property)

The construction of the fiber-product of a sequence of orbifolds

• Let Yi, i ∈ I be a collection of the orbifold-coverings of Y .

• We cover Y by elementary neighborhoods Vj for j ∈ J forming a good cover.

• We take inverse images p−1
i (Vj) which is a disjoint union of V/Gk for some

finite group Gk.

• Fix j and we form one fiber product by V/Gk by taking one from p−1
i (Vj) for

each i.

• Fix j and we form a fiber-product of p−1
i (Vj), which will essentially be the dis-

joint union of the above fiber products indiced by the product of the component
indices for each i.

• Over regular points of Vj , this is the ordinary fiber-product.
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The construction of the fiber-product of a sequence of orbifolds

• Now, we wish to patch these up using imbeddings. Let U → Vj ∩ Vk. We can
assume U = Vj ∩ Vk which has a convex cell as a cover.

– We form the fiber products of p−1
i (U) as before which can be realized in

Vj and Vk.

– Over the regular points in Vj and Vk, they are isomorphic. Then they are
isomorphic.

– Thus, each component of the fiber-product can be identified.

• By patching, we obtain a covering Y f of Y with the covering map pf .

4.2.1 The construction and the properties of the universal cover

The construction of the universal cover

• The collection of cover of an orbifold is countable upto isomorphisms preserving
base points. (Cover by a countable good cover and for each elementary neigh-
borhood, there is a countable choice.)

• Take a fiber product of Yi, i = 1, 2, 3, .... The fiber-product Ỹ with a base point
∗. We take a connected component.

• The for any cover Yi, there is a morphism Ỹ → Yi.

• The universal cover is unique up to covering orbifold-isomorphisms by the uni-
versality property.

Properties of the universal cover

• The group of automorphisms of Ỹ is called the fundamental group and is denoted
by π1(Y ).

• π1(Y ) acts transitively on Ỹ on fibers of p̃−1(x) for each x in Y . (To prove this,
we choose one covering of Y from a class of base-point preserving isomorphism
classes of coverings of Y . Then the universal cover with any base-point occurs
will occur in the list and hence a map from Ỹ to it preserving base-points.)

• Ỹ /π1(Y ) = Y .

• Any covering of Y is of form Ỹ /Γ for a subgroup Γ of π1(Y ).

• The isomorphism classes of coverings of Y is the set of conjugacy classes of
subgroups of π1(Y ).

• There is a path-approach to defining the fundamental groups that we will not be
considering.
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Properties of the universal cover

• The group of automorphism is N(Γ)/Γ.

• A covering is regular if and only if Γ is normal.

• A good orbifold is an orbifold with a cover that is a manifold.

• An very good orbifold is an orbifold with a finite cover that is a manifold.

• A good orbifold has a simply-connected manifold as a universal covering space.

Induced homomorphism of the fundamental group

• Given two orbifolds Y1 and Y2 and an orbifold-diffeomorphism g : Y1 → Y2.
Then the lift to the universal covers Ỹ1 and Ỹ2 is also an orbifold-diffeomorphism.
Furthermore, once the lift value is determined at a point, then the lift is unique.

• Also, homotopies ft : Y1 → Y2 of orbifold-maps lift to homotopies in the uni-
versal covering orbifolds f̃t : Ỹ1 → Ỹ2. Proof: we consider regular parts and
model neighborhoods where the lift clearly exists uniquely.

• Given orbifold-diffeomorphism f : Y → Z which lift to a diffeomorphism
f̃ : Ỹ → Z̃, we obtain f∗ : π1(Y )→ π1(Z).

• If g is homotopic to f , then g∗ = f∗.

4.2.2 Examples

Examples

• An annulus with one boundary component silvered has a fundamental group
isomorphic to Z × Z2.

The fundamental group can be computed by removing open-ball neighborhoods
of the cone-points and using Van-Kampen theorem.

• Suppose that a two-dimensional orbifold has boundary and silvered points. Then
remove open-ball neighborhoods of the cone-points and corner-reflector points.
Then the fundamental group of remaining part can be computed by Van-Kampen
theorem by taking open neighborhoods of silvered boundary arcs. Finally, adding
the open-ball neighborhoods, we compute the fundamental group.

• The fundamental group of a three-dimensional orbifold can be computed simi-
larly.

23



5 2-orbifolds

5.1 Classifications of 1-dimensional suborbifolds of 2-orbifolds
The triangulations of 2-orbifolds and classification

• Theorem: Any 2-orbifold is obtained from a smooth surface with corner by sil-
vering some arcs and putting cone-points and corner-reflectors.

• A 2-orbifold is classified by the underlying smooth topology of the surface with
corner and the number and orders of cone-points, corner-reflectors, and the bound-
ary pattern of silvered arcs.

• proof: basically, strata-preserving isotopies.

Classifications of 1-dimensional suborbifolds of 2-orbifolds

• A suborbifold Q′ on a subspace XQ′ ⊂ XQ is the subspace so that each point
of XQ′ has a neighborhood in XQ modeled on an open subset U of Rn with a
finite group Γ preserving U ∩ Rd where Rd ⊂ Rn is a proper subspace, so that
(U ∩ Rd,Γ′) is in the orbifold structure of Q′.

• Here Γ′ denotes the restricted group of Γ toU∩Rd, which is in general a quotient
group.

Classifications of 1-dimensional suborbifolds of 2-orbifolds

• A compact 1-orbifold is either a closed arc, a segment, a segment with one sil-
vered endpoint, or a segment with two silvered end-point.

• Properly and nicely imbedded 1-orbifolds in a 2-orbifold with boundary. (nice
means that only boundary goes to boundary.)

– No silvered-point case: An imbedded closed arc avoiding boundary or a
segment with two endpoints in the boundary

– One silvered-point case: A segment with silvered endpoint at a cone-point
of order two or a silvered arc and the other endpoint in the boundary.

– Two silvered-point case: A segment with silvered endpoints at cone-points
or order two or in silvered arcs.

5.2 Orbifold Euler-characteristic for 2-orbifolds
Orbifold Euler-characteristic for 2-orbifolds due to Satake

• We define the Euler characteristic to be

χ(X) =
∑
ci

(−1)dim(ci)(1/|Γ(ci)|),

where ci ranges over the open cells and |Γ(ci)| is the order of the group Γi
associated with ci.
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• If X is finitely covered by another orbifold X ′, then χ(X ′) = rχ(X) where r is
the number of sheets for regular points. This follows since the sum of the order
of local groups in the inverse image of the elementary neighborhood is always r.

• The Euler-characteristic of 1-orbifold: a circle O, a segment 1, a segment with
one silvered-point 1/2, a full 1-orbifold O.

Orbifold Euler-characteristic for 2-orbifolds due to Satake

• For 2-orbifolds Σ1,Σ2 meeting in a compact 1-orbifold Y in the interior forming
a 2-orbifold Σ as a union, we have the following additivity formula:

χ(Σ) = χ(Σ1) + χ(Σ2)− χ(Y ), (1)

• To be verified by counting cells with weights since the orders of singular points
in the boundary orbifold equal the ambient orders.

Orbifold Euler-characteristic for 2-orbifolds due to Satake

• Suppose that a 2-orbifold Σ with or without boundary has the underlying space
XΣ and m cone-points of order qi and n corner-reflectors of order rj and nΣ

boundary full 1-orbifolds.

• Then the following generalized Riemann-Hurwitz formula is very useful:

χ(Σ) = χ(XΣ)−
m∑
i=1

(
1− 1

qi

)
− 1

2

n∑
j=1

(
1− 1

rj

)
− 1

2
nΣ, (2)

which is proved by a doubling argument and cutting and pasting.

• If Σ has nonempty boundary, then it is easy to show that the boundary consists
of circles and full 1-orbifolds, which are mutually disjoint suborbifolds.

5.3 Definition of Splitting and sewing 2-orbifolds
Definition of Splitting and sewing 2-orbifolds

• A compact 2-orbifold is good except for the sphere or with one or two cone-
singularities of order p and q where p 6= q and a disk with one or two corner
singularities of order p, q, p 6= q.

• The compact good 2-orbifolds are always very good. If χ ≤ 0, then it is very
good.

• Let S be a very good orbifold so that its underlying space XS is a pre-compact
open surface with a path-metric admitting a compactification to a surface with
boundary.
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• Let Ŝ be a very good cover, that is, a finite regular cover, of S, so that S is
orbifold-diffeomorphic to Ŝ/F where F is a finite group acting on Ŝ.

• Since XŜ = Ŝ is also pre-compact and has a path-metric, complete it to obtain a
compact surface X ′

Ŝ
.

• X ′
Ŝ
/F with the quotient orbifold structure is said to be the orbifold-completion

of S.

• Let S be a 2-orbifold with an embedded circle or a full 1-orbifold l in the interior
of S. The completion S′ of S − l is said to be obtained from splitting S along
l. Since S − l has an embedded copy in S′, we see that there exists a map
S′ → S sending the copy to S − l. Let l′ denote the boundary component of S
corresponding to l under the map.

• Conversely, S is said to be obtained from sewing S′ along l′.

• If the interior of the underlying space of l lies in the interior of the underlying
space of S, then the components of S′ are said to be decomposed components of
S along l, and we also say that S decomposes into S′ along l.

• Of course, if l is a union of disjoint embedded circles or full 1-orbifolds, the
same definition holds.

• Here we can consider S as a some open suborbifold of a 1-orbifold in consider-
ation.

Silvering and clarifying

• There are two distinguished classes of splitting and sewing operations:

• A simple closed curve boundary component can be made into a set of mirror
points and conversely in a unique manner.

• a boundary point has a neighborhood which is realized as a quotient of an open
ball by a Z2-action generated by a reflection about a line.

• A boundary full 1-orbifold can be made into a 1-orbifold of mirror points and two
corner-reflectors of order two and conversely in a unique manner: ( a boundary
point has a neighborhood which is a quotient space of a dihedral group of order
four acting on the open ball generated by two reflections. )

• The forward process is called silvering and the reverse process clarifying.

5.4 Regular neighborhoods of 1-orbifolds
The classification of the Euler-characteristic zero orbifolds

• Let A be a compact annulus with boundary. The quotient orbifold of an annulus
has Euler characteristic zero.
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• From Riemann-Hurwitz equation, all of the Euler characteristic zero 2-orbifolds
with nonempty boundary:

(1) an annulus, (2) a Möbius band, (3) an annulus with one boundary compo-
nent silvered (a silvered annulus),

(4) a disk with two cone-points of order two with no mirror points ( a (; 2, 2)-
disk ),

(5) a disk with two boundary 1-orbifolds, two edges (a silvered strip),

(6) a disk with one cone-point and one boundary full 1-orbifold (a bigon with
a cone-point of order two), that is, it has only one edge, and

(7) a disk with two corner-reflectors of order two and one boundary full 1-
orbifold (a half-square). (It has three edges.)

•

(4)

(6)

(5)

(7)

Regular neighborhoods of 1-orbifold

• A circle or a 1-orbifold l in the interior of a 2-orbifold S, not homotopic to a
point.

• l has a neighborhood of zero Euler characteristic considering its good cover.

• Since the inverse image of l consists of closed curves which represent generators.

– For (1) and (2), l is the closed curve representing the generator of the fun-
damental group;

– For (3), l is the mirror set that is a boundary component;

– For (4), l is the arc connecting the two cone-points unique up to homotopy;

– For (5), l is an arc connecting two interior points of two edges respectively;

– For (6), l is an arc connecting an interior point of an edge and the cone-
point of order two;

– For (7), the edge in the topological boundary connecting the two corner-
reflectors of order two.
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Regular neighborhoods of 1-orbifold

• Given a 1-orbifold l and a neighborhood N of it in some ambient 2-orbifold, N
is said to be a regular neighborhood if the pair (N, l) is diffeomorphic to one of
the above.

• A 1-orbifold in a good 2-orbifold has a regular neighborhood which is unique up
to isotopy.

5.5 Splitting and sewing on 2-orbifolds reinterpreted
Splitting on 2-orbifolds reinterpreted

• Let l be a 1-orbifold embedded in the interior of an orbifold S.

• If one removes l from the interior of a regular neighborhood, we obtain either a
union of one or two open annuli, or a union of one or two open silvered strip.

• In (2)-(4), an open annulus results. For (1), a union of two open annuli results.
For (6)-(7), an open silvered strip results. For (5), we obtain a union of two open
silvered strips.

• These can be easily completed to be a union of one or two compact annuli or a
union of one or two silvered strips respectively.

• We can complete S − l in this manner: We take a closed regular neighborhood
N of l in S.

• We remove N − l to obtain the above types and complete it and re-identify with
S− l to obtain a compactified orbifold. This process is the splitting of S along l.

Sewing on 2-orbifolds reinterpreted

• Conversely, we can describe sewing: Take an open annular 2-orbifold N which
is a regular neighborhood of a 1-orbifold l.

• Suppose that l is a circle. We obtain U = N − l which is a union of one or two
annuli.

• Take an orbifold S′ with a union l′ of one (resp. two) boundary components
which are circles.

• Take an open regular neighborhood of l′ and remove l′ to obtain V .

• U and V are the same orbifold. We identify S′ − l′ and N − l along U and V .

• This gives us an orbifold S, and it is easy to see that S is obtained from S′ by
sewing along l′.
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Identification interpretations of splitting and sewing

• In the following we describe the topological identification process of the under-
lying space involved in these six types of sewings. The orbifold structure on the
sewed orbifold should be clear.

• Let an orbifold Σ have a boundary component b. (Σ is not necessarily con-
nected.) b is either a simple closed curve or a full 1-orbifold. We find a 2-orbifold
Σ′′ constructed from Σ by sewing along b or another component of Σ.

• (A) Suppose that b is diffeomorphic to a circle; that is, b is a closed curve. Let
Σ′ be a component of the 2-orbifold Σ with boundary component b′. Suppose
that there is a diffeomorphism f : b → b′. Then we obtain a bigger orbifold Σ′′

glued along b and b′ topologically.

(I) The construction so that Σ′′ does not create any more singular point results
in an orbifold Σ′′ so that

Σ′′ − (Σ− b ∪ b′)

is a circle with neighborhood either diffeomorphic to an annulus or a Möbius
band.

(1) In the first case, b 6= b′ (pasting).
(2) In the second case, b = b′ and 〈f〉 is of order two without fixed points

(cross-capping).

• (II) When b = b′, the construction so that Σ′′ does introduce more singular points
to occur in an orbifold Σ′′ so that

Σ′′ − (Σ− b)

is a circle of mirror points or is a full 1-orbifold with endpoints in cone-points of
order two depending on whether f : b→ b

(1) is the identity map (silvering), or

(2) is of order two and has exactly two fixed points (folding).

• (B) Consider when b is a full 1-orbifold with endpoints mirror points.

(I) Let Σ′ be a component orbifold (possibly the same as one containing b)
with boundary full 1-orbifold b′ with endpoints mirror points where b 6= b′.
We obtain a bigger orbifold Σ′′ by gluing b and b′ by a diffeomorphism
f : b→ b′. This does not create new singular points (pasting).
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(II) Suppose that b = b′. Let f : b→ b be the attaching map. Then

(1) if f is the identity, then b is silvered and the end points are changed
into corner-reflectors of order two (silvering).

(2) If f is of order two, then Σ′′ has a new cone-point of order two and
has one-boundary component orbifold removed away. b corresponds
to a mixed type 1-orbifold in Σ′ (folding).

– It is obvious how to put the orbifold structure on Σ′′ using the previous
descriptions using regular neighborhoods above.

6 Lecture 2: Introduction to orbifolds II: Geometry
Abstract:

In this talk, we will define geometric structures on orbifolds and define their de-
formation spaces and the fact that the deformation spaces are locally homeomorphic
to the G-representation spaces quotient by conjugations. We introduce the Teichmuller
theory of orbifolds, i.e., the deformation spaces of hyperbolic structures on 2-orbifolds,
and show that they are homeomorphic to cells.

6.1 Geometric structures on orbifolds
Definition of geometric structures on orbifolds

• Let (X,G) be a pair defining a geometry. That is, G is a Lie group acting on a
manifold effectively and transitively.

• Given an orbifold M , there is at least three ways to define (X,G)-geometric
structures on M .

– Using atlas of charts.

– A developing map from the universal covering space.

– A cross-section of the flat orbifold X-bundle.

Atlas of charts approach

• Given an atlas of charts for M , for each chart (U,K, φ) we find an X-chart
ρ : U → X and an injective homomorphism h : K → G so that ρ is an
equivariant map.

• For each imbedding i : (V,H, ψ) → (U,K, φ) where V has an X-chart ρ′ :
V → X and equivariant with respect to an injective homomorphism h′ : H →
G, we have

ρ ◦ i = g ◦ ρ′, h′(·) = gh(i∗(·))g−1

• If we simply identify with open subsets of X , the above simplifies greatly and i
is a restriction of an element of g and i∗ is a conjugation by g also.
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• This gives us a way to build an orbifold from pieces of X .

• A maximal such atlas of X-charts is called an (X,G)-structure on M .

Atlas of charts approach

• An (X,G)-map M → N is a smooth map f so that for each x and y = f(x),
there are charts (U,K, φ) and (V,H, ψ) so that f sends φ(U) into ψ(V ) and lifts
to f̃ : U → V so that ρ′ ◦ f̃ = g ◦ ρ and h′(i∗(·)) = gh(·)g−1.

• In otherwards, f is a restriction of an element g of G up to charts with a homo-
morphism K → H induced by a conjugation by an element of G.

Atlas of charts approach

• (X,G)-orbifold is always good.

• Proof:

– Basically build a germ of local (X,G)-maps from M to X which is a
principal bundle and is a manifold: For each (U,K, φ), we build G(U) =
G × U/K and a projection G(U) → U . We paste these together to find
G(M).

– G(M) is a manifold since K acts on G× U freely.

– The foliation given by pasting g0×U is a foliation by open manifolds with
the same dimension as M . Each leave of the foliation is covers M .

• If G is a subrgroup of a linear group, then M is very good by Selberg’s lemma.

• Thus M is a quotient M̃/Γ where Γ contains copies of all of the local group.

The developing maps and holonomy homomorphisms

• Let M̃ denote the universal cover of M with a deck transformation group π.

• Then we obtain a developing map D : M̃ → X by first finding an initial chart
ρ : U → X and continuing by extending maps by patches.

• One uses a nice cover of M̃ and extend. The map is well-defined independently
of which path of charts one took to arrive at a given chart.

• To show this, we need to homotopy and consider three nice charts simultaneously
and the fact thatM admits a real analytic structure and the charts are real analytic
and hence if they agree on an open set, then they extend each other.

• This gives an (X,G)-structure on M̃ as well and the cover map is an (X,G)-
map.
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The developing maps and holonomy homomorphisms

• Since we can change the initial chart to k ◦ ρ for any k ∈ G, we see that k ◦D is
another developing map and conversely any developing map is of such form.

• Given a deck transformation γ : M̃ → M̃ , we see that D ◦ γ is a developing
map also and hence equals h(γ) ◦D for some h(γ) ∈ G.

• The map h : π → G is a homomorphism, so-called the holonomy homomor-
phism.

• The pair (D,h) is said to be the development pair.

• The development pair is determined up to an action of G given by (D,h(·)) →
(g ◦D, gh(·)g−1).

The developing maps and holonomy homomorphisms

• Conversely, a developing map (D,h) gives us X-charts:

• For each open chart (U,K,ψ), we lift to a component of p−1(U) in M̃ and
obtain a restriction of D to the component. This gives us X-charts.

• A different choice of components gives us the compatible charts.

• Local group actions and imbeddings satisfy the desired properties.

• Thus, a development pair completely determines the (X,G)-structure on M .

6.2 The definition of the Teichmüller space of 2-orbifolds
Definition of Teichmüller spaces of 2-orbifolds

• A hyperbolic structure on a 2-orbifold is a geometric structure modeled on H2

with the isometry group PSL(2,R).

• The Teichmüller space T (M) of a 2-orbifold M is the deformation space of
hyperbolic structures on the 2-orbifold.

• As before, we reinterpret the space as

– The set of diffeomorphisms f : M → M ′ for M an orbifold and M ′ a
hyperbolic 2-orbifold.

– The equivalence relation f : M → M ′ and g : M → M” if exists a
hyperbolic isometry h : M ′ →M” so that h ◦ f is isotopic to g.

– The quotient space is same as above.

• A necessary condition for an orbifold to have a hyperbolic structure is that the
orbifold euler characteristic be negative: This follows from the Gauss-Bonnet
theorem. Here the negative of the hyperbolic area is the Euler characteristic
times 2π.
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• A closed 2-orbifold with a complex structure has a unique hyperbolic structure
provided it is compact and has negative Euler characteristic.

• The deformation space of complex structures on a closed 2-orbifold is identical
with the Teichmuller space as defined here by the uniformization theorem.

6.3 The geometric cutting and pasting and the deformation spaces
The geometric cutting and pasting and the deformation spaces

• A compact geodesic 1-orbifold without boundary points in the interior of a 2-
orbifold Σ are either

– a closed geodesic in the interior or entirely in the boundary of |Σ| or

– a segment with two silvered points which are either at silvered edges or
cone-points of order two. The topological interior is either in the interior
or entirely in the boundary of |Σ|.

• The geometric type is classified by length and the topological type. Such a
geodesic 1-orbifold is covered by a closed geodesic in some cover of the 2-
orbifold, which is a surface.

• The Teichmüller space T (I) for a 1-orbifold I is the product of the spaces of
lengths R+ for components of I .

•

Geometric constructions.

• Recall the type of topological constructions with 1-orbifolds. Suppose they are
boundary components of 2-orbifolds whose components have negative Euler
characteristics.

– (A)(I) Pasting or crosscapping along simple closed curves.

– (A)(II) Silvering or folding along a simple closed curve.

– (B)(I) Pasting along two full 1-orbifolds.

– (B)(II) Silvering or folding along a full 1-orbifold.

• Now we suppose that the simple closed curves and 1-orbifolds are geodesic and
try to obtain geometric version of the above.

Geometric constructions.

• Suppose that the involved 1-orbifolds are geodesic boundary components of a
hyperbolic 2-orbifolds.
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– (A)(I). For pasting two closed geodesics, we have a R-amount of isome-
tries to do this. They will create hyperbolic structures inequivalent in the
Teichmüller space. (Here the length of two closed geodsics have to be the same.
)

– (A)(I) For cross-capping, we have a unique isometry. The isometry has
to be a slide reflection of distance half the length of the closed geodesic.
(There is no conditions.)

–

l!

" "

!

l ’

’

’

Geometric constructions.

• (A)(II). For folding a closed geodesics, we have a R-amount of isometries to
do this. They will create hyperbolic structures inequivalent in the Teichmüller
space. The choice depends on the choice of two fixed points of the pasting map.
The distance is the half of length of the closed geodesic. (no condition)

• (A)(II) For silvering, we have unique isometry to do this. (no condition)

•

l!

" F

F " F-1

!F(   )

Geometric constructions.

• (B)(I). For pasting along two geodesic full 1-orbifolds, We have a unique way to
do this. The lengths of the orbifolds have to be the same.

• (B)(II) For silvering and folding, we have unique isometry to do this. (no condi-
tion)

•
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"

! ’

" ’

r

r

q

q
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6.4 The decomposition of 2-orbifolds into elementary orbifolds.
Topological decomposition of hyperbolic 2-orbifolds into elementary orbifolds along
geodesic 1-orbifolds.

• Suppose that Σ is a compact hyperbolic orbifold with χ(Σ) < 0 and geodesic
boundary.

• Let c1, . . . , cn be a mutually disjoint collection of simple closed curves or 1-
orbifolds so that the orbifold Euler characteristic of the completion of each com-
ponent of Σ− c1 − · · · − cn is negative.

• Then c1, . . . , cn are isotopic to simple closed geodesics or geodesic full 1-orbifolds
d1, . . . , dn respectively where d1, . . . , dn are mutually disjoint.

The diagram for elementary orbifolds

• (D1)

(P4)

(A2) (A3)

(P1) (P2) (P3)

(A4)
(A1)

(D2) (D4)(D3)

The elementary orbifolds. Arcs with dotted arcs next to them indicate bound-
ary components. Black points indicate cone-points and white points the corner-
reflectors.

Elementary 2-orbifolds.
We require the boundary components be geodesics.

(P1) A pair-of-pants.

(P2) An annulus with one cone-point of order n. (A(; n))

(P3) A disk with two cone-points of order p, q, one of which is greater than 2. (D(; p, q))

(P4) A sphere with three cone-points of order p, q, r where 1/p + 1/q + 1/r < 1.
(S2(; p, q, r))

(A1) An annulus with one boundary component a union of a singular segment and one
boundary-orbifold. (2-pronged crown andA(2, 2; ).) It has two corner-reflectors
of order 2 if the boundary components are silvered.
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(A2) An annulus with one boundary component of the underlying space in a singular
locus with one corner-reflector of order n, n ≥ 2. (The other boundary compo-
nent is a closed geodesic which is the boundary of the orbifold.) (We call it a
one-pronged crown and denote it A(n; ).)

(A3) A disk with one singular segment and one boundary 1-orbifold and a cone-point
of order greater than or equal to three (D2(2, 2; n)).

(A4) A disk with one corner-reflector of order m and one cone-point of order n so
that 1/2m + 1/n < 1/2 (with no boundary orbifold). (n ≥ 3 necessarily.)
(D2(m; n).)

(D1) A disk with three edges and three boundary 1-orbifolds. No two boundary 1-
orbifolds are adjacent. (We call it a hexagon or D2(2, 2, 2, 2, 2, 2; ).)

(D2) A disk with three edges and two boundary 1-orbifolds on the boundary of the
underlying space. Two boundary 1-orbifolds are not adjacent, and two edges
meet in a corner-reflector of order n, and the remaining one a segment. (We
called it a pentagon and denote it by D2(2, 2, 2, 2, n; ).)

(D3) A disk with two corner-reflectors of order p, q, one of which is greater than or
equal to 3, and one boundary 1-orbifold. The singular locus of the disk is a
union of three edges and two corner-reflectors. (We call it a quadrilateral or
D2(2, 2, p, q; ).)

(D4) A disk with three corner-reflectors of order p, q, r where 1/p+1/q+1/r < 1 and
three edges (with no boundary orbifold). (We call it a triangle or D2(p, q, r; ).)

The geometric decomposition into elementary orbifolds

• Let Σ be a compact hyperbolic orbifold with χ(Σ) < 0 and geodesic boundary.

• Then there exists a mutually disjoint collection of simple closed geodesics and
mirror- or cone- or mixed-type geodesic 1-orbifolds so that Σ decomposes along
their union to a union of elementary 2-orbifolds or such elementary 2-orbifolds
with some boundary 1-orbifolds silvered additionally.

6.5 The Teichmüller spaces for 2-orbifolds
Thurston’s theorem

• Let Σ be a compact 2-orbifold with empty boundary and negative Euler charac-
teristic diffeomorphic to an elementary 2-orbifold.

• Then the deformation space T (Σ) of hyperbolic RP2-structures on Σ is home-
omorphic to a cell of dimension −3χ(XΣ) + 2k + l + 2n where XΣ is the
underlying space and k is the number of cone-points, l is the number of corner-
reflectors, and n is the number of boundary full 1-orbifolds.
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Strategy of proof

• Proposition A: for each elementary 2-orbifold S, T (S) is homeomorphic to
T (∂S), where T (∂S) is the product of R+ for each component of ∂S corre-
sponding to the hyperbolic-metric lengths of components of ∂S.

• Then for hyperbolic structures, to obtain a bigger orbifold, we need to use the
above result about the Teichmüller spaces under geometric decompositions.

The generalized hyperbolic triangle theorem

• A generalized triangle in the hyperbolic plane is one of following:

(a) A hexagon: a disk bounded by six geodesic sides meeting in right angles
labeled A, β,C, α,B, γ.

(b) A pentagon: a disk bounded by five geodesic sides labeled A,B, α,C, β
where A and B meet in an angle γ, and the rest of the angles are right
angles.

(c) A quadrilateral: a disk bounded by four geodesic sides labeled A,C,B, γ
where A and C meet in an angle β, C and B meet in an angle α and the
two remaining angles are right angles.

(d) A triangle: a disk bounded by three geodesic sides labeled A,B,C where
A and B meet in an angle γ and B and C meet in an angle α and C and A
meet in angle β.

The generalized hyperbolic triangles

•

B

A

C

!

"

#

A B

C

#

!"

C C
A

B
A

B
! "

#

!

"#

(c)
(d)

(b)(a)

The trigonometry
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• For generalized triangles in the hyperbolic plane,

(a) coshC =
coshα coshβ + cosh γ

sinhα sinhβ

(b) coshC =
coshα coshβ + cos γ

sinhα sinhβ

(c) sinhA =
cosh γ cosβ + cosα

sinhβ sin γ

(d) coshC =
cosα cosβ + cos γ

sinα sinβ
(3)

• In (a), (α, β, γ) can be any positive numbers.

• In (b), (α, β) can be any positive numbers and γ in (0, π)

• In (c), (α, β) can be any positive real numbers in (0, π) satisfying α + β < π,
and γ any real number.

• In (d), (α, β, γ) can be any real numbers in (0, π) satisfying α+ β + γ < π.

The proof of Proposition A.

• The following lemma implies Proposition A for elementary 2-orbifolds of type
(D1), (D2), (D3), and (D4).

• Silvered edges labeled by the capital letters A,B,C. Assign to each vertex an
angle of the form π/n (where (n > 1 is an integer), for which it is a corner-
reflector of that angle. Each edge labeled by Greek letters α, β, γ is a boundary
full 1-orbifold.

• Then in cases (a), (b), (c), (d) F : T (P ) → T (∂P ) for each of the above
orbifolds P is a homeomorphism; that is, T (P ) is homeomorphic to a cell of
dimension 3, 2, 1, or 0 respectively.

• Let S be an elementary 2-orbifold of type (A1), (A2), (A3), or (A4).

• Then F : T (S)→ T (∂S) is a homeomorphism. Thus, T (S) is a cell of dimen-
sion 2, 1, 1, or 0 when S is of type (A1), (A2), (A3) or (A4) respectively. In case
(A4), T (S) is a single point.

• For elementary orbifolds of type (P1),(P2),(P3), or (P4), we simply notices that
they double covers orbifolds of type (D1),(D2),(D3), or (D4) which is realized
as isometries where each of the boundary components do the same. In fact,
the isometry can be explictly constructed by taking shortest geodesics between
boundary components.
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The steps to prove Thurston’s theorem.

• Let a 2-orbifold Σ, each component of which has negative Euler characteristic,
be in a class P if the following hold:

(i) The deformation space of hyperbolic RP2-structures T (Σ) is diffeomor-
phic to a cell of dimension

−3χ(XΣ) + 2k + l + 2n

where k is the number of cone-points, l the number of corner-reflectors, n
is the number of boundary full 1-orbifolds.

(ii) There exists a principal fibration

F : T (Σ)→ T (∂Σ)

with the action by a cell of dimension dim T (Σ)− dim T (∂Σ).

• Let Σ be a 2-orbifold whose components are orbifolds of negative Euler charac-
teristic, and it splits into an orbifold Σ′ in P .

• We suppose that (i) and (ii) hold for Σ′, and show that (i) and (ii) hold for Σ.
Since Σ eventually decomposes into a union of elementary 2-orbifolds where (i)
and (ii) hold, we would have completed the proof.

• The proof follows by going through each of the constructions....

(A)(I)(1) Let the 2-orbifold Σ′′ be obtained from pasting along two closed curves b, b′

in a 2-orbifold Σ′. The map resulting from splitting

SP : T (Σ′′)→ ∆ ⊂ T (Σ′)

is a principal R-fibration, where ∆ is the subset of C(Σ′) where b and b′ have
equal invariants.

(A)(I)(2) Let Σ′′ be obtained from Σ′ by cross-capping. The resulting map

SP : T (Σ′′)→ T (Σ′)

is a diffeomorphism.

(A)(II)(1) Let Σ′′ be obtained from Σ′ by silvering. The clarifying map

SP : T (Σ′′)→ T (Σ′)

is a diffeomorphism.

(A)(II)(2) Let Σ′′ be obtained from Σ′ by folding a boundary closed curve l′. The
unfolding map

SP : T (Σ′′)→ T (Σ′)

is a principal R-fibration.
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(B)(I) Let Σ′′ be obtained by pasting along two full 1-orbifolds b and b′ in Σ′. The
splitting map

SP : T (Σ′′)→ ∆ ⊂ T (Σ′)

is a diffeomorphism where ∆ is a subset of T (Σ′) where the invariants of b and
b′ are equal.

(B)(II) Let Σ′′ be obtained by silvering or folding a full 1-orbifold. The clarifying or
unfolding map

SP : T (Σ′′)→ T (Σ′)

is a diffeomorphism.
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