


  For 2x2 matrix det(A)=det(AT).  
  In general we have 

  The simpliest way to prove this is to use the 
formula.  

  The another method is to use the cofactor 
expansion along rows for A and that along 
columns for AT. See p 190-191. 



  The following will be important in computing:  



  Proof (a): det(A)=a_i1C_i1+a_i2C_i2+…
+a_inC_in.  
◦  If we multiply the ith-row by k, then each term in 

det(A) get multiplied by k.  
  Proof (b): We can use formula.  
◦  Suppose we exchanged two columns. Then in each 

elementary products in det(B). 
◦  We can make a one-to-one correspondence 

between elementary products in det(A) to those of 
det(B) by identifying the same term up to signs.  
◦  The sign in each term of B should be reversed from 

the corresponding one in A. 
◦  To see in case we exchange two rows, we use AT. 



  Proof (c): Add i-th row to j-th row. Cofactor 
expand det(A) along the j-th row. Then we 
have  

◦  Here A’’ is a matrix obtained by replacing the j-th 
row of A by the i-th row of A.  
◦  By Theorem 4.2.3 (a), det(A’’)=0. 
◦  For column case, we use AT. 

  See Example 1.  

€ 

det(A') = (a j1 + kai1 )C j1 + (a j2 + kai2 )C j 2 + ...+ (a jn + kain )C jn

= det(A) + kdet(A' ')



  Proof (a): If A has two same rows, then after 
the exchange of the two rows, we still get A.  
By Theorem 4.2.2 (b), det(A)=-det(A). Thus 
det(A)=0.  

  Proof (b): If A has two proportional rows, then 
one row is a multiple of the other row, say by 
k. If we multiply the other row by 1/k, then 
the result has determinant 0. Thus det(A)=0 
by Theorem 4.2.2 (a). 

  Proof (c): omit. 



  Given a matrix, we do row ad column 
operations of type Theorem 4.2.2 (c) to make 
many zeros.  

  Example 4.  



  We can use Gaussian elimination to evaluate a 
determinant.  

  Each multiplication by k of a row should be 
compensated by multiplying by1/k to the 
result.  

  Each row exchange should be compensated 
by the multiplication by -1.  

  For type (c), we do not need any 
compensations.  

  See Example *. 



  First we need. R ref of A. Then  
det(R)=0 iff det(A)=0. This follows since each 
elementary operation preserves det being 0 
or nonzero.  

  Proof: ->) If A is invertible, then ref of A is I. 
Thus, det(A) is nonzero.  

  <-) If det(A) is not zero, then det(R) is not 
zero for the ref R of A. Thus R has no zero 
rows. Hence R is I. If ref of A is I, then A is 
invertible by Theorem 3.3.3. 



  Proof: We need: 



  Proof of 4.2.8: Just computations 
  Proof of 4.2.9. EB is just a result of row 

operation. det(EB) is just some number times 
det(B).  
The number is det(E).  

  Proof of 4.2.5: If A is singular (i.e. not 
invertible), then AB is singular (not invertible) 
also. By Theorem 4.2.4 both have 
determinant 0 and we are done.  

  If A is invertible, then A=E_1E_2…E_k.  
◦  det(AB)=det(E_1E_2…E_kB)= det(E_1)det(E_2…

E_k)det(B) = 
det(E_1)det(E_2)…det(E_k)det(B).  
◦  det(A)=det(E_1)det(E_2)…det(E_k).  
◦  Thus the conclusion holds.  



  A=LU. det(A)=det(L)det(U).  
  We just need to multiply the diagonals. 
  Obtaining LU decompostions is around 2n3/3 

which is much smaller than n!.  



  Theorem 4.2.6. det(A-1)= 1/det(A).  
  Proof: AA-1=I. det(A)det(A-1)=det(I)=1.  
  Deteminant of A+B.  
◦  It is not true that det(A+B)=det(A)+det(B). 
◦  However, there are other invariants that we haven’t 

learned that we compensate the difference.  





  1-10 Theory practise 
  11-18 Gaussian elimination 
  19-28 Theory  


