Dimension and structure

We will study subspaces through bases. Although there are many, they can be used to make a subspace like the Euclidean space.

This enables us to study abstract vector spaces later.

Bases for subspaces

- Consider V=Span{v_1,v_2,...,v_l}.
- If v_i is a linear combination of other vectors, we can drop v_i. V=Span{v_1,v_2,..,v_i-1,v_i+1,..,v_l}.
- To obtain a minimal set for a given V, we need to get V=Span{v_1,...,v_s} so that v_1,..,v_s are linearly independent.

Definition 7.1.1 A set of vectors in a subspace V of \mathbb{R}^n is said to be a **basis** for V if it is linearly independent and spans V.

- Example: {O} no basis.
 - Rⁿ itself is a subspace and has a standard basis.
 - A line through O has a basis consisting of only one unique vector. (One can choose any such.)
 - A plane through O has a basis consisting of two nonzero vectors tangent to the plane. Any two nonparallel and nonzero will form a basis.
 - To make the independence test easier, we use the following.
 That is we will only need to consider first i ones to understand independence.

Theorem 7.1.2 If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a set of two or more nonzero vectors in \mathbb{R}^n , then S is linearly dependent if and only if some vector in S is a linear combination of its predecessors.

- The nonzero row vectors in the ref are linearly independent.
- Proof: Given a row with a leading 1 at jth position, the linear combinations of the previous rows, will give you a nonzero entry at entries below the j-th position. By theorem 7.1.2, we are done.
- Given an independent set of vectors {v_1,v_2,..,v_s}, suppose v is a nonzero vector which is not a linear combinations of the given ones, then one can add v to the list and the list is still independent. Why?

The existence of basis

Theorem 7.1.3 (*Existence of a Basis*) If V is a nonzero subspace of \mathbb{R}^n , then there exists a basis for V that has at most n vectors.

- Proof: V is not {O}. Let v_1 be a nonzero vector. (It exists.)
 - If V=Span{v_1}, we are done.
 - If V is not Span{v_1}. Choose v_2 not in Span{v_1}. {v_1,v_2} are independent (why?). If V=Span{v_1,v_2}, then we are done.
 - Suppose we did this continuously, V has an independent set
 S={v_1,v_2,...,v_s}. If V=SpanS, then we are done. Otherwise, choose v_{s+1} not in the span.
 - By Theorem 3.4.8, s cannot be greater than n.
 - Thus we must stop at some s to get V=SpanS and S is independent.
- Basis is not unique for V.

Theorem 7.1.4 All bases for a nonzero subspace of \mathbb{R}^n have the same number of vectors.

- Proof: {v_1,...,v_k}, {w_1,...,w_m} bases. Show k=m.
 - Assume k < m without loss of generality.
 - We can write w_i as linear combination of v_1,..,v_k.
 - Let A be kxm matrix doing this.
 - w_i = Σ_j A_jiv_j (*)
 - Then Ax=o has a nontrivial solution since k < m.
 - Let (c_1,...,c_m) be the nontrivial solution.
 - Then c_1a_1+...+c_ma_m=o for a_i ith row of A.
 - Then c_1w_1+...+c_mw_m =0 by computations.
 - This follows by pluging in (*) to the equation and collecting over v_is.

Dimension

Definition 7.1.5 If V is a nonzero subspace of \mathbb{R}^n , then the *dimension* of V, written $\dim(V)$, is defined to be the number of vectors in a basis for V. In addition, we define the zero subspace to have dimension 0.

- Example: Rn has dimension n.
- Example: Solution space has dimension equal to the number f of free variables.
 - Setting i-th free variable 1 and the rest o gives us a column vector v_i. (canonical solutions)
 - Then {v_1,v_2,...,v_f} spans the solution space.
 - {v_1,v_2,..v_f} is linearly independent since the positions of 1 and o for free variable positions in v_is are different.
 - Thus {v_1,v_2,...,v_f} is a basis.
- See Example 7.

Dimension of a hyperplane

- a_1x_1+a_2x_2+...+a_nx_n=o.
- [1,*,*,...,*] or [0,1,*...,*],...
- It has n-1 free variables.

Theorem 7.1.6 If **a** is a nonzero vector in \mathbb{R}^n , then $\dim(\mathbf{a}^{\perp}) = n - 1$.