7.11. Coordinates with respect to a basis Each basis gives you are coordinate system and conversely. #### Nonrectangular coordinates Given a basis v_I,v_2,..,v_n, we can write each vector v as a unique linear combination. $$v=c_1v_1+c_2v_2+...+c_nv_n$$. - Fixing a basis, v->(c_I,c_2,..,c_n) - This is sensitive to the order of v_is. - This gives us a coordinate system. - Converely, given any coordinate system (1,0,..,0)->v_1, (0,1,0,..,0)-> v_2,.., (0,0,..,1)->v_n. This forms a basis. **Definition 7.11.1** If $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an ordered basis for a subspace W of R^n , and if $$\mathbf{w} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_k \mathbf{v}_k$$ is the expression for a vector \mathbf{w} in W as a linear combination of the vectors in B, then we call $$a_1, a_2, \ldots, a_n$$ the *coordinates of* w *with respect to* B; and more specifically, we call a_j the \mathbf{v}_j -coordinate of w. We denote the ordered k-tuple of coordinates by $$(\mathbf{w})_B = (a_1, a_2, \dots, a_k)$$ and call it the *coordinate vector* for \mathbf{w} with respect to B; and we denote the column vector of coordinates by $$[\mathbf{w}]_B = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \end{bmatrix}$$ and call it the *coordinate matrix* for w with respect to B. - Example B={(0,1),(1,0)} - \circ (a,b)=b(0,1)+a(1,0). ->[(a,b)]_B=(b,a) - Example I. $B=\{(2,1,2),(3,0,-1),(5,0,0)\}.$ - \circ (3,1,4)=1(2,1,2)-2(3,0,-1)+(5,0,0) - \circ [(3,1,4)]_B=(1,-2,1). - Example 2. B={e_1,e_2,..,e_n} - o w=(w_I,w_2,..,w_n) =w_le_I+w_2e_2+... +w_ne_n - o [w]_B=(w_I,w_2,...,w_n) ## Coordinates with respect to orthonormal basis. - Let B={v_1,v_2,..,v_n} be an orthonomal basis of R^{n.} - We know w=(w.v_I)v_I+(w.v_2)v_2+...+(w.v_n)v_n. - o [w]_B=((w.v_I),(w.v_2),...,(w.v_n)) - Example 3. B={(cos t,sint),(-sint, cos t)} - (a,b) = (acost + bsint)(cost,sint)+(-asint+bcost)(-sint, cost). - [(a,b)]_B=(acost+bsint,-asint+bcost) ## Computing with coordinates w.r.t. orthonomal basis Dot product, norms are preserved under "coordinate changes" **Theorem 7.11.2** If B is an orthonormal basis for a k-dimensional subspace W of \mathbb{R}^n , and if \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in W with coordinate vectors $$(\mathbf{u})_B = (u_1, u_2, \dots, u_k), \quad (\mathbf{v})_B = (v_1, v_2, \dots, v_k), \quad (\mathbf{w})_B = (w_1, w_2, \dots, w_k)$$ then: (a) $$\|\mathbf{w}\| = \sqrt{w_1^2 + w_2^2 + \dots + w_k^2} = \|(\mathbf{w})_B\|$$ (b) $$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \cdots + u_k v_k = (\mathbf{u})_B \cdot (\mathbf{v})_B$$ ### Change of basis problems **The Change of Basis Problem** If **w** is a vector in \mathbb{R}^n , and if we change the basis for \mathbb{R}^n from a basis B to a basis B', how are the coordinate matrices $[\mathbf{w}]_B$ and $[\mathbf{w}]_{B'}$ related? - Solution: B={v_I,v_2,..,v_n}. B'={v' I,v' 2,..,v' n}. - v_I=p_IIv'_I+p_2Iv'_2+...+p_nIv'_n. - v_2=p_12v'_1+p_22v'_2+...+p_n2v'_n. - 0 - v_n=p_Inv'_I+p_2nv'_2+...+p_nnv'_n. - Let w be any vector in Rⁿ. - w=a_Iv_I+..._+a_nv_n. [w]_B=(a_I,..,a_n) Since the entries equal P times column vector (a_I,...,a_n) +(a lp nl+a 2p n2+...+a np nn)v' n • [w]_B'= P_(B->B')[w]_B. **Theorem 7.11.3** (Solution of the Change of Basis Problem) If **w** is a vector in \mathbb{R}^n , and if $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $B' = \{\mathbf{v}_1', \mathbf{v}_2', \dots, \mathbf{v}_n'\}$ are bases for \mathbb{R}^n , then the coordinate matrices of **w** with respect to the two bases are related by the equation $$[\mathbf{w}]_{B'} = P_{B \to B'}[\mathbf{w}]_B \tag{10}$$ where $$P_{B\to B'} = [[\mathbf{v}_1]_{B'} \mid [\mathbf{v}_2]_{B'} \mid \dots \mid [\mathbf{v}_n]_{B'}]$$ (11) This matrix is called the transition matrix (or the change of coordinates matrix) from B to B'. - Example 5. Let B={(1,0),(0,1)},B'={(cos t,sint),(-sint, cos t)} - o (1,0)=cost(cost,sint)+(-sint)(-sint,cost) - (0, I)=sint(cost,sint)+(cost)(-sint,cost). - Then P_(B->B')=[[cost,sint], [-sint,cost]]. #### Invertibility of transition matrices. - B_I,B_2,B_3 three basis of Rⁿ. - Then - We omit proof. - P_(B_2->B_I)P_(B_I->B_2) - $\circ = P_{B_1} = I B_1 = I$ **Theorem 7.11.4** If B and B' are bases for R^n , then the transition matrices $P_{B'\to B}$ and $P_{B\to B'}$ are invertible and are inverses of one another; that is, $$(P_{B'\to B})^{-1} = P_{B\to B'}$$ and $(P_{B\to B'})^{-1} = P_{B'\to B}$ #### A Procedure for Computing $P_{B \to B'}$ - **Step 1.** Form the matrix $[B' \mid B]$. - **Step 2.** Use elementary row operations to reduce the matrix in Step 1 to reduced row echelon form. - **Step 3.** The resulting matrix will be $[I \mid P_{B \to B'}]$. - **Step 4.** Extract the matrix $P_{B\to B'}$ from the right side of the matrix in Step 3. - Proof: To find [v_i]_B' we solve for [v'_I,v'_2,...,v'_n]x=v_i. - Form [v'_I,v'_2,...,v'_n|v_i] -> ref is [l|y] for some y. y=[v_i]_B' (Why?) - [v'_I,v'_2,...,v'_n|v_I,v_2,...,v_n]-> [I|P_(B->B')]. - Example 7. #### Coordinate maps - B a basis. - $x->(x)_B=[x]_B$ is a coordinate map. - (cv)_B=cx_B since [cv]_B=c[v]_B - (v+w)_B=v_B+w_B since [v +w]_B=[v]_B+[w]_B. **Theorem 7.11.5** If B is a basis for R^n , then the coordinate map $\mathbf{x} \to (\mathbf{x})_B$ (or $\mathbf{x} \to [\mathbf{x}]_B$) is a one-to-one linear operator on R^n . Moreover, if B is an orthonormal basis for R^n , then it is an orthogonal operator. **Theorem 7.11.6** If A and C are $m \times n$ matrices, and if B is any basis for R^n , then A = C if and only if $A[\mathbf{x}]_B = C[\mathbf{x}]_B$ for every \mathbf{x} in R^n . ## Orthonomal basis and transition matrices **Theorem 7.11.7** If B and B' are orthonormal bases for R^n , then the transition matrices $P_{B\to B'}$ and $P_{B'\to B}$ are orthogonal. Proof: [v_I]_B', [v_2]_B',...,[v_n]_B' is orthonormal also by Theorem 7.11.12. - We can think of matrix as transformations. But we can also think of a nonsingular matrix as a transition matrix. - Any nonsingular matrix can be considered a matrix of n column vectors forming a basis. - See Example 9. **Theorem 7.11.8** If P is an invertible $n \times n$ matrix with column vectors $\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n$, then P is the transition matrix from the basis $B = \{\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n\}$ for R^n to the standard basis $S = \{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ for R^n .